1第3章导数及其应用2010年高考题1..(2010全国卷2理)(10)若曲线12yx在点12,aa处的切线与两个坐标围成的三角形的面积为18,则a(A)64(B)32(C)16(D)8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22yxka,切线方程是13221()2yaaxa,令0x,1232ya,令0y,3xa,∴三角形的面积是121331822saa,解得64a.故选A.2.(2010辽宁文)(12)已知点P在曲线41xye上,为曲线在点P处的切线的倾斜角,则的取值范围是(A)[0,4)(B)[,)42(C)3(,]24(D)3[,)4答案D解析:选D.2441212xxxxxeyeeee,12,10xxeye,即1tan0,3[,)43.(2010辽宁理)(1O)已知点P在曲线y=41xe上,a为曲线在点P处的切线的倾斜角,则a的取值范围是(A)[0,4)(B)[,)423(,]24(D)3[,)4【答案】D【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。【解析】因为'2441(1)2xxxxeyeee,即tana≥-1,所以344.(2010全国卷2文)(7)若曲线2yxaxb在点(0,)b处的切线方程是10xy,则(A)1,1ab(B)1,1ab(C)1,1ab(D)1,1ab【解析】A:本题考查了导数的几何意思即求曲线上一点处的切线方程∵02xyxaa,∴1a,(0,)b在切线10xy,∴1b25.(2010江西理)12.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为00StS,则导函数'ySt的图像大致为【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A。6.(2010江苏卷)14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S梯形的周长)梯形的面积,则S的最小值是________。【解析】考查函数中的建模应用,等价转化思想。一题多解。设剪成的小正三角形的边长为x,则:222(3)4(3)(01)1133(1)(1)22xxSxxxx(方法一)利用导数求函数最小值。224(3)()13xSxx,22224(26)(1)(3)(2)()(1)3xxxxSxx2222224(26)(1)(3)(2)42(31)(3)(1)(1)33xxxxxxxx1()0,01,3Sxxx,当1(0,]3x时,()0,Sx递减;当1[,1)3x时,()0,Sx递增;故当13x时,S的最小值是3233。(方法二)利用函数的方法求最小值。令1113,(2,3),(,)32xttt,则:2224418668331tStttt故当131,83xt时,S的最小值是3233。7.(2010湖南文)21.(本小题满分13分)3已知函数()(1)ln15,afxxaxax其中a0,且a≠-1200208.(Ⅰ)讨论函数()fx的单调性;(Ⅱ)设函数332(23646),1(),1(){xxaxaxaaexefxxgx(e是自然数的底数)。是否存在a,使()gx在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。48.(2010浙江理)(22)(本题满分14分)已知a是给定的实常数,设函数22()()()fxxaxbe,bR,xa是()fx的一个极大值点.(Ⅰ)求b的取值范围;(Ⅱ)设123,,xxx是()fx的3个极值点,问是否存在实数b,可找到4xR,使得1234,,,xxxx的某种排列1234,,,iiiixxxx(其中1234,,,iiii=1,2,3,4)依次成等差数列?若存在,求所有的b及相应的4x;若不存在,说明理由.解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。(Ⅰ)解:f’(x)=ex(x-a)2(3)2,xabxbaba令222()(3)2,=(3-a+b)4(2)(1)80,gxxabxbabababaab则于是,假设1212,()0.xxgxxx是的两个实根,且(1)当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意。(2)当x1a且x2a时,由于x=a是f(x)的极大值点,故x1ax2.即()0gx即2(3)20aabababa所以b<-a所以b的取值范围是(-∞,-a)此时4223xxaab2(1)826abaa或4223xxaab2(1)826abaa5(2)当21xaax时,则212()xaax或12()2()axxa于是1ab9132此时42(3)3(3)1133242axaababxba综上所述,存在b满足题意,当b=-a-3时,426xa7132ba时,41132xa7132ba时,41132xa9.(2010全国卷2理)(22)(本小题满分12分)设函数1xfxe.(Ⅰ)证明:当x>-1时,1xfxx;(Ⅱ)设当0x时,1xfxax,求a的取值范围.6【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力.【参考答案】7【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.10.(2010陕西文)21、(本小题满分14分)已知函数f(x)=x,g(x)=alnx,aR。(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;(2)设函数h(x)=f(x)-g(x),当h(x)存在最小之时,求其最小值(a)的解析式;(3)对(2)中的(a),证明:当a(0,+)时,(a)1.解(1)f’(x)=12x,g’(x)=ax(x0),由已知得x=alnx,12x=ax,解德a=2e,x=e2,两条曲线交点的坐标为(e2,e)切线的斜率为k=f’(e2)=12e,切线的方程为y-e=12e(x-e2).(2)由条件知Ⅰ当a.0时,令h'(x)=0,解得x=24a,所以当0x24a时h'(x)0,h(x)在(0,24a)上递减;当x24a时,h'(x)0,h(x)在(0,24a)上递增。8所以x24a是h(x)在(0,+∞)上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。所以Φ(a)=h(24a)=2a-aln24a=2Ⅱ当a≤0时,h(x)=(1/2-2a)/2x0,h(x)在(0,+∞)递增,无最小值。故h(x)的最小值Φ(a)的解析式为2a(1-ln2a)(ao)(3)由(2)知Φ(a)=2a(1-ln2a)则Φ1(a)=-2ln2a,令Φ1(a)=0解得a=1/2当0a1/2时,Φ1(a)0,所以Φ(a)在(0,1/2)上递增当a1/2时,Φ1(a)0,所以Φ(a)在(1/2,+∞)上递减。所以Φ(a)在(0,+∞)处取得极大值Φ(1/2)=1因为Φ(a)在(0,+∞)上有且只有一个极致点,所以Φ(1/2)=1也是Φ(a)的最大值所当a属于(0,+∞)时,总有Φ(a)≤111.(2010辽宁文)(21)(本小题满分12分)已知函数2()(1)ln1fxaxax.(Ⅰ)讨论函数()fx的单调性;(Ⅱ)设2a,证明:对任意12,(0,)xx,1212|()()|4||fxfxxx.解:(Ⅰ)f(x)的定义域为(0,+),2121()2aaxafxaxxx.当a≥0时,()fx>0,故f(x)在(0,+)单调增加;当a≤-1时,()fx<0,故f(x)在(0,+)单调减少;当-1<a<0时,令()fx=0,解得x=12aa.当x∈(0,12aa)时,()fx>0;x∈(12aa,+)时,()fx<0,故f(x)在(0,12aa)单调增加,在(12aa,+)单调减少.(Ⅱ)不妨假设x1≥x2.由于a≤-2,故f(x)在(0,+)单调减少.所以1212()()4fxfxxx等价于12()()fxfx≥4x1-4x2,即f(x2)+4x2≥f(x1)+4x1.令g(x)=f(x)+4x,则1()2agxaxx+4=2241axxax.9于是()gx≤2441xxx=2(21)xx≤0.从而g(x)在(0,+)单调减少,故g(x1)≤g(x2),即f(x1)+4x1≤f(x2)+4x2,故对任意x1,x2∈(0,+),1212()()4fxfxxx.12.(2010辽宁理)(21)(本小题满分12分)已知函数1ln)1()(2axxaxf(I)讨论函数)(xf的单调性;(II)设1a.如果对任意),0(,21xx,||4)()(|2121xxxfxf,求a的取值范围。解:(Ⅰ)()fx的定义域为(0,+∞).2121'()2aaxafxaxxx.当0a时,'()fx>0,故()fx在(0,+∞)单调增加;当1a时,'()fx<0,故()fx在(0,+∞)单调减少;当-1<a<0时,令'()fx=0,解得12axa.则当1(0,)2axa时,'()fx>0;1(,)2axa时,'()fx<0.故()fx在1(0,)2aa单调增加,在1(,)2aa单调减少.(Ⅱ)不妨假设12xx,而a<-1,由(Ⅰ)知在(0,+∞)单调减少,从而12,(0,)xx,1212()()4fxfxxx等价于12,(0,)xx,2211()4()4fxxfxx①令()()4gxfxx,则1'()24agxaxx①等价于()gx在(0,+∞)单调减少,即1240aaxx.从而22222241(21)42(21)2212121xxxxaxxx10故a的取值范围为(-∞,-2].……12分13.(2010全国卷2文)(21)(本小题满分12分)已知函数f(x)=x3-3ax2+3x+1。(Ⅰ)设a=2,求f(x)的单调期间;(Ⅱ)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围。【解析】本题考查了导数在函数性质中的应用,主要考查了用导数研究函数的单调区间、极值及函数与方程的知识。(1)求出函数的导数,由导数大于0,可求得增区间,由导数小于0,可求得减区间。(2)求出函数的导数()fx,在(2,3