老QC七大手法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

QC七大手法1、检查表2、散布图3、层别法4、特性要因图(鱼骨图)5、柏拉图6、直方图7、控制图一、检查表㈠、定义:使用简单易于了解的标准化表格或图形,填入规定的符号,再加以统计汇整其数据,可提供量化分析或对比检查用,也称点检表或查核表。㈡、检查表的分类(按用途分)1、点检用检查表:用于确认、检查作业过程中的状况以防止作业疏忽或遗漏。如:设备点检记录表;填写时只作是非或选择的注记。2、记录用检查表:用于收集计划资料,用于不良原因和不良项目的记录;填写时需要将数据分类为各项目以符号、划记或数字记录;如:检验记录表。㈢、检查表的记录项目1、标题:目的何在?2、对象:目的:为何?3、人员:由谁做?4、方法:何种方法?5、时间:何时?时间间隔多久?6、过程别、检验站:在何地?7、结果整理:合计、平均、统计8、传达途径:谁需要了解?分析要报告谁?㈣、检查表的制作要点:没有特定的形式,可以配合需求目的而作更改,但有以下注意点:1、并非一开始就要求完美,可参考他人的格式模仿出新表格,使用时如不理想,再行改善。2、越简单越好,易记录、看图,以最短的时间将现场的资料记录下来,3、一目了然,检查的事项应清楚陈述,使记录者在记录问题的同时,即能明了所登记的内容,4、以会议形式集思广益,不可遗漏重要项目,5、设计不会令使用者记录错误的检查表。㈤、检查表使用注意事项:1、数据收集完成后观察整体数据是否代表某些事物;2、数据是否集中在某些项目,各项目之间差异为何?3、某些事项是否随时间而变化?4、如有异常应立即查明原因,并采取必要的措施。5、检查的项目应随着作业的改善而改变。6、由使用的记录即能迅速判断,采取行动。7、检查责任者,明确指定谁做,并使其了解收集的目的和方法8、收集的数据应能获得层别的情报。9、数据收集后,若发现并非当初所设想的,应重新检讨再搜集只。10、检查的项目、计算单位等基准应一致以便进行统计分析。11、尽快呈报结果,并知汇相关人员。12、数据收集应注意抽样的随机性及代表性。14、检查表完成后可利用柏拉图加以整理,以便掌握重点。二、散布图㈠、定义:将因果关系所对应变化的数据分别点绘小x、y轴坐标的象限上,以观察其中的相关性是否存在。㈡、散布图的作用:1、能掌握原因与结果之间是否有相关及相关的程度如何。2、能检视离岛现象是否存在。3、原因与结果相关性高时,二者可互为替代变数,对于过程特性或产品特性的控制,可从原因或结果中选择一较经济性的变数予以监控,并可通过观察一参数的变化而知另一参数的变化。㈢、散布图的制作方法:1.收集成对得数据(x1,y1),(x2,y2)…整理成数据表。NO.XY1X1Y12X2Y2………2.找出X,Y的最大值及最小值。3.以X,Y的最大值及最小值建立X—Y座标,并确定适当的刻度便于绘点。4、将数据依次点于X—Y座标中,两组数据重复时以⊙表示。5、必要时,可将相关资料注记于散布图上。㈣、散布图的注意事项:1、是否有异常点:在异常原因未被掌握之前,不可任意删除异常点.2、是否需要层别:数据的获得常常因为作业人员、方法、材料、设备和时间不同而不同,从而使数据的相关性受到影响。3、散布图是否与固有技术、经验相符:散布图若与固有技术、经验不相符,应追查原因与结果是否受到重大因素干扰。(五)、散布图的判读;1、完全正(负)相关,点散布在一条45°直线上。2、高度正(负)相关:原因与结果的变化近于等比例。3、中度正(负)相关:原因与结果的变化较近于等比例。4、中度正(负)相关:原因与结果的变化几乎不成比例。5、无相关:原因与结果的变化完全不成比例。6、曲线相关:结果随原因成曲线变化。(六)、相关系数计算:∑(X-X)(Y-Y)∑XY-∑X∑Y/nr==nσxσy√∑X2-(∑X)2/n*√∑Y2-(∑Y)2/n0.7r1高度相关0.3r0.7中度相关0r0.3低度相关r=0不相关(七)、当原因与结果线性相关时。可计算回归直线方程以预测原因变化时结果的变化。y=a+bx其中:∑xy-∑x∑y/nb=∑x2-(∑x)2/na=∑y/n-b(∑x)/n三、层别法㈠、定义:通过各种分层收集数据以寻求不良原因之所在或最佳条件,是改善品质之有利手段㈡、层别的分类:1、部门别:生产、测试、维修、采购、研究等;2、制程别:压铸、加工、烤漆、电镀等;3、作业员别:班别、线别|、操作法别、熟练程度别、年龄别、性别等;4、机器、设备别:机台、机型、制造厂、工具、新旧、速度等。5、作业条件别:温度、湿度、压力、天气、时间等。6、时间别:小时别、日期别、周别、上下午别等。7、原材料别:供应商别、批次别、材质别、产地别、成分别、储存时间别等。8、测量之层别:测量人员别、测量方法别、测量设备别、测量环境别等9、检查之层别:检查方法、检查员、检查场所等。10、环境、气候之层别:气温别、湿度别、晴雨别、照明别等。11、地区别:海岸与内陆,国内、外,东、西区等12、制品的层别:新旧品别、标准品与特殊品等。13、其它;良品与不良品别、包装别、运输方法别等。㈢、层别法的实施步骤1、选定欲调查原因之对象;2、设计收集资料所使用之表单;3、设定资料之收集点并训练站别员工如何填制表单。4、记录及观察所得之数值。5、整理资料、分类绘制应有之图表。6、比较分析与最终推论。㈣、层别法使用之注意事项:1、实施前,首先确定层别的目的;2、检查表应针对目的设计;3、数据之性质分类应清晰详细载明;4、依各种可能的原因加以层别,便于寻出真因所在。5、层别所得之情报,应与对策相连接,并付诸实际行动。四、直方图㈠、定义:将质量特性的测量值分为几个相等的区间作横轴,并将测定值在各区间内所出现的次数累积而成的面积用柱子排起来的图形。㈡、使用直方图的目的:1、了解分配的型态。2、研究制程能力或测知制程能力。3、工程解析与管制。4、测知数据之真伪。5、计划产品之不良率。6、求分配之平均值与标准差。7、籍以订定规格界限。8、与规格或标准值比较。9、调查是否混入两个以上的不同群体。10、了解设计管制是否符合制程管制。㈢、相关名词解释:1、次数分配:将许多复杂数据依其差异的幅度分成若干组,在各组内列入测定值出现的次数。2、相对次数:在各组出现的次数除以全部之次数。3、累积次数:自次数分配的测定值较小的一端将其次数累积计算。4、全距(R):在所有数据中最大值与最小值的差。5、组距(h);全距/组数。6、算术平均数(x):数据的总和除以数据总数。x=(x1+x2+x3+…+xn)/n=∑x/nx=x0+h(∑μf)/n7、中位数():将数据从小到大依序排列,位居中央的数。(若遇偶数时取中央两数之平均值)8、组中值(xi):各组中点值。9、简化组中值(μ):μ=(xi-x0)/h(x0=次数最多一组的组中值;xi=各组组中值)10、众数:次数分配中出现次数最多一组的值。11、标准差(σ):σ=σn=h×√[∑μ2f-(∑μf)2/n]/n12、样本标准差(S)S=σn-1=h×√[∑μ2f-(∑μf)2/n]/(n-1)㈢、直方图的制作步骤1、收集数据并记录(应是全数均匀随机抽样,数据应多于50个)例;某尺寸规格130—160mm,今随机抽样60个,测量值如下•138142148145140141139140141•138138139144138139136137137•131127138137133133140130136•128138132145141135131136131•134136137133134132135134132•134121129137132130135135134•1361311311391361352、找出数据中的最大值(L)与最小值(S)•L=148S=1213、求全距(R):R=L-S=148-121=274、决定组数:根据数据的多少一般有下述两种方法决定:⑴、根据史特古斯的公式K=[1+3.32lgn]计算:•K=[1+3.32lg60]=[1+3.32×1.78]=[6.9]=7⑵、参照下表确定组数:数据数组数-506-751-1006-10101-2507-12250-10-205、求组距(h):h=R/K;例:h=27/7=3.86,为便于计算取整数4。6、求各组上、下组界:第一组下组界=最小值-最小测定单位/2=121-1/2=120.5第一组上组界=第一组下组界+组距=124.5第二组下组界=第一组上组界=124.5第二组上组界=第二组下组界+组距=128.5……注:热有数据小于最小一组下界或大于最大一组上界应自动增加一组7、求组中值:组中值=(该组下组界+该组上组界)/2例:第一组组中值=(120.5+124.5)/2=122.5第二组组中值=(第二组下组界+第二组上组界)/2=(124.5+128.5)/2=126.5第二组组中值=(第三组下组界+第三组上组界)/2=(128.5+132.5)/2=130.5……8、作次数分配表:⑴、将所有数据,依其数值大小标记于各组之组界内,并计算其次数。⑵、次数之和应等于测定值之总数。例:次数分配表组号组界组中值划记次数1120.5-124.5122.512124.5-128.5136.523128.5-132.5130.5124132.5-136.5134.5185136.5-140.5138.5196140.5-144.5142.557144.5-148.5146.53合计609、作直方图⑴、将次数分配表图示化,横轴表示数值变化,纵州表示次数。⑵、横轴与纵轴各取适当的单位长度,将各组之组界分别标在轴上。(各组界应为等距离)⑶、以各组内次数为高,组具为底,将每一组画成矩形⑷、在图上的右上角记录相关的数据履历(数据总数n,平均值x,标准差σ……),并画上规格上下限。⑸、记如必要事项:制品名、工程名、期间、制作日期、制XX0M20SL=130UL=16015n=60品名:x=135.8共程名:10σ=4.87期间:s=σn-1=4.915日期:制作者:120.5124.5128.5132.5136.5140.5144.5148.5㈣、常见的直方图型态:1、正常型:中间高,两边低,左右对称分布,有集中趋势。制程在正常运转。2、缺齿型:高低不一,有缺齿情型,测量人员对测定值有偏好,假造数据。3、切边型:有一端被切断。制程经过全检。4、离岛型:在左右端形成小岛。工程调整错误或使用不同原材料,经过调整即可。5、高原型:形状似高原状。应层别。6、双蜂型:有两个高峰出现。有两种分配相混合。7、偏态型:高峰偏向一边,另一边低,拖长尾巴。尾巴拖长时,应检讨是否在技术上可以接受,工具磨损或松动时会发生此现象。㈤、CPK值计算:CPK=min((UL-X)/3*σ;(X-SL)/3*σ)㈥、使用直方图的注意事项:1、异常值应去除后再分组;2、对于从样本测定值推测群体状态,直方图是最简单有效的方法;3、应取得详细的数据资料(如时间、原料、测定者、设备、环境条件等)4、进行制程管理及分析改善时,可结合使用层别法,更容易找出问题的症结点,对于品质的改善有事半功倍的效果。五、柏拉图㈠、柏拉图的定义:根据所收集的数据,按原因、状况、项目、发生的位置等不同区分标准而加以整理、分类,籍以寻求占最大比率只原因、状况或位置,按其大小顺序排列,再加上累积值的图形。(也叫ABC图、排列图)㈡、柏拉图的制作步骤:1、决定数据分类项目;(分类的方式有)⑴、结果的分类包括不良项目别、场所别、时间别、工程别。⑵、原因的分类包括材料别(厂商、成份)、方式别(作业条件、程序、方法、环境等)、人(年龄、熟练度、经验等)、设备别(机械、工具等)等。注:分类的项目必须符合问题的症结,一般先从结果分类着手,以便洞悉问题之所在,然后再进行原因分类,分析问题发生之原因,以便采取有效的对策。⒉、决定数据收集的期间,并按分类项目在期间内收集数据。例如:压铸不良状况记录表:日期\项目起跑缩孔水纹欠铸拉伤其它4/1015826224/1112447234/12810331

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功