本科毕业设计第1页共43页1绪论在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。1.1温度控制器的发展状况温度是表征物体冷热程度的物理量,是工业生产和日常生活中经常测量的物理量,也是人类研究最早测量方法最多的物理量之一。因而温度检测仪应用领域之广,使用数量之多,一直高居各类测量仪之首。近百年来,温度传感器的发展大致经历了以下三个阶段:传统的分立式温度传感器(含敏感元件);模拟集成温度传感器/控制器;智能温度传感器(即数字温度传感器)。a)分立式温度传感器传统的热电偶、热电阻、热敏电阻及半导体温度传感器,均属于分立式温度传感器,传感器本身就是一个完整的、独立的感温元件。此类传感器通常要配温度变送器,以获得标准的模拟量(电压或电流)输出信号。b)模拟集成温度传感器集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成传感器。可完成温度测量及模拟信号输出功能的专用IC,它属于一种简单的集成温度传感器,适合远距离测量、控温,不需要进行非线性校准,典型产品有AD590、AD592等。c)模拟集成温度控制器模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。d)智能温度传感器智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。智能温度传感器是微电子技术、计算机技术和自动测试技术的结晶,它也是集成温度传感器领域中最具活力和发展前途的一种新产品。目前,国际上许多著名的集成电路生产厂已经本科毕业设计第2页共43页开发出上百种智能温度传感器产品。1.2课题研究必要性随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。温度是工业生产中常见并且十分重要的参数之一,特别是在冶金、石油、食品、印染等工厂中。由于不同的工艺所需的温度变化曲线各不相同,而现有的温度控制仪大多只能进行恒温控制。因此许多生产过程中加热、保温、降温以及自然降温等操作都是由人工操作的,这就不可避免地产生各种误差,进而影响产品质量,个别采用的温度自动控制系统由于造价较高、操作复杂等原因又限制了在中小企业的应用,因此研究和开发一种实用的温度控制系统成为当务之急。在工业生产过程中需要实时测量控制温度,尤其是在高危生产行业,如花炮生产,煤矿行业等。但依靠人工检测控制既浪费时间,物力,人力,又有一定的危险性,且数据也不准确,因此研究自动的温度测量控制方法和装置具有重要的意义。1.3现代控制系统相对传统控制系统的优势传统的控制系统主要由测量电路和控制电路组成,所具备的功能较少,也比较弱,而且结构很复杂。计算机技术的迅速发展,使得传统的控制系统发生了根本性的变革,即采用微机作为控制系统的核心,代替传统的控制系统的传统的电子线路,从而成为新一代的微机化控制系统。将微机技术引入控制系统中,不仅可以解决传统控制系统不能解决的问题,而且还能简化电路、增加或增强功能、提高控制精度和可靠性,显著增强测控系统的自动化、智能化程度,而且可以缩短系统研制周期、降低成本、易于升级和维护。因此,现代控制系统设计,特别是高精度、高性能的控制系统,目前已很少不采用计算机技术的了。计算机技术的引入,可以为控制系统带来以下一些新特点和新功能:a)自动调零功能在每次采样前对传感器的输出值自动清零,从而大大降低因控制系统漂移变化造成的误差。b)数字滤波功能利用已算机软件对测量数据进行处理,可以抑制各种干扰和脉冲信号。c)数据处理功能利用计算机技术可以实现传统仪器无法实现的各种复杂的处理和运算功能。本科毕业设计第3页共43页d)复杂控制规律利用计算机技术不仅可以实现经典的PID控制,还可以实现各种复杂的控制规律,例如,自适应控制、模糊控制等。e)自我诊断功能采用计算机技术后,可对控制系统进行监测,一旦发现故障则立即进行报警,并可显示故障部位或可能的故障原因,对排除故障的方法进行提示。微机化的控制系统是以微机为核心、测量控制一体化的系统,这种系统对被控对象的控制是依据对被控对象的测量结果决定的。1.4课题设计特点和应用领域课题采用的是单总线数字温度传感器DS18B20,可直接将温度转换值以16位数字码的方式串行输出:将温度转化为数字编码只需1秒左右。而且它具有独特单线接口方式,即与微处理器接口时仅需占用1个I/O口;支持多节点;测温时无需任何外部元件,可以通过数据线直接供电,具有超低功耗工作方式。测温范围为—55℃~+125℃,测温度精度可达到0.0625℃。由于传送的是串行放大器和A/D转换器可以统统被省却,因而这种测温方式大大提高了各种温度测控系统的可靠性,降低了成本,缩小了体积。其测温系统结构简单,硬件少,成本低,测温精度高,转换速度快,实用性高,应用范围广泛,市场前景好,经济效益可观。系统可以应用于温度要求在—55℃~+125.9℃之间的任何领域。比如:铁路,粮库,水果,蔬菜存储仓库的温度控制,以及多路温度测控仪,各种养殖场的温度控制监测。由于本系统的测温精度可达0.0625℃,因而对于温度要求特别严格的环境来说,本系统是一个较为理想的监控系统。1.5智能温度控制器的课题主要内容课题的任务是应用单片机及DS18B20单总线器件设计一套温度检测系统,实现对温度的测量及显示,并通过按键人为设定温度上下限!而且在温度超上限价或下限量有控制功能,系统以高性能/价格比的89S52为核心,完成对数据的分析、处理、显示、温度上下限设置、超限自动控制,采用单线数字温度传感器DS18B20来完成对温度的采样和转换。由于课题是完成对温度的实时监测,因而系统的核心部分就是如何实现温度采集。系统采用的是美国DALLAS公司继DS1820之后推出的一种改进型智能温度传感器DS18B20来完成这一任务的。DS18B20与传统的热敏电阻相比,它能够直接读出被测温本科毕业设计第4页共43页度并且可根据实际要去通过简单的编程实现9-12位的数字值读数方式,可分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅从一根口线,温度变换功率来源于数据总线,总线本身可以为所接的DS180B20供电,而无需外电源。DS18B20需在严格的时序控制下才能进行正常操作。对DS18B20的操作包括初始化操作、读/写时间片。总线上的所有操作均从初始化开始,初始化或对RAM、ROM操作。主CPU通过“时间片”来写入或读出DS18B20中的数据。概括说,主CPU经过单线接口访问DS18B20的工作流程为:对DS18B20进行初始化→ROM操作命令→存储器(包括RAM和EERAM)操作命令→数据处理。主CPU对ROM操作完毕,即发出控制操作命令,使DS18B20完成温度测量并将测量结果存入高速暂存器中,然后单片机可读出此温度转换值,并随之进行数据处理、送显示等操作。2智能温度控制系统基本构成及工作原理2.1系统的硬件构成课题设计的硬件部分由89S52单片机、DS18B20、74LS14、74LS273锁存器以及若干电容、7个发光二极管、4只数码管、5个按键、11.0592MHZ晶振组成。(结构如图2.1)图2.1系统设计结构图以下对各组成部件功能进行简单介绍:89S52单片机用于温度的采集,数据处理,存储温度上下限和超温控制。DS18B20是单总线数字温度传感器,输出方式为串行单线输出,主要作用是把温度值以数字形式输出和存储转换精度控制字。第三章将作出详细介绍,此处不做过多赘述。温度传感器89S52显示器与接口控制电路量限设定与控制键盘与接口控制电路本科毕业设计第5页共43页74LS02或非门,用于选择锁存器(与写信号或非)。74LS14施密特触发器,用于键盘消抖。74LS273锁存器。用锁存显示位、段码以及指示信号。按键用于输入和查看温度上下限,使单片机复位,每隔2小时发送0.5秒的启动电机的正脉冲。晶振是为单片机提供工作脉冲。数码管用于显示温度值。发光二极管用于上下限溢出报警,温度超限报警及控制,设置上/下限指示,正常工作指示。各功能对应的指示灯设置如表2.1:表2.1指示灯设置功能第几灯点亮显示温度第1灯0x02显示下限温度1、20x03设下限温度标志位2、70x41设下限温度十位2、60x21设下限温度个位2、50x11设下限温度十分位2、40x09显示上限温度1、30x06设上限温度标志位3、70x44设上限温度十位3、60x24设上限温度个位3、50x14设上限温度十分位3、40x0C低于下限温度1、2、4、5、6、70x7B高于上限温度1、3、4、5、6、70x7E2.2系统的软件构成课题原计划用汇编语言完成。后来决定使用C语音编写程序,系统的软件由温度数据采集、数据处理、温度显示及按键处理等部分组成。89S52完成的功能主要是数据处理、数据分析、控制计算、进制转换、数据显示、按键处理以及电机控制等。温度采样和转换部分由DS18B20来完成。本科毕业设计第6页共43页2.2.1系统的工作原理首先,由温度传感器DS18B20对温度进行采样和转换,将测量结果送给单片机,单片机将输入的温度值进行数据处理,并将温度值与设定的温度值上下限进行比较。根据比较结果进行相应的处理。若温度超限则报警指示灯亮,以便进行及时处理。系统原理框图如图2.2所示:图2.2系统原理图3智能温度控制系统硬件设计本章是论文核心部分,主要介绍基于单片机的温度控制系统硬件总体设计,按照设计方案,整个温控系统硬件主要包括以下单元:按键输入,温度采集、处理,温度超限报警,定时发出脉冲等。温度控制的核心为温度的采集和处理,系统选用特别适用于编程及数据处理的MS-51单片机89S52,并通过89S52实现对其他各组成部分的编程控制。下面是核心原件的介绍:3.1数字温度传感器DS18B20详述3.1.1DS18B20简介DS18B20是美国DALLAS半导体公司生产的可组网数字式温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。与其它温度传感器相比,DS18B20具有以下特性:a)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。b)在使用中不需要任何外围元件。c)可用数据线供电,电压范围:+3.0V~+5.5V。d)测温范围:-55℃~+125℃。固有测温分辨率为0.1℃。e)通过编程可实现9~12位的数字读数方式。DS18B2089S52显示器指示灯段锁存位锁存锁存器本科毕业设计第7页共43页f)用户可自设定非易失性的报警上下限值。g)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。3.1.2DS18B20的引脚名称及作用外形如图3.1所示。其体积只有DS1820的一半,引脚定义相同。a)DQ:数据输入输出引脚b)VDD:可接电源,也可接地。因为每只DS18B20都可以设置成两种供电方式。采用数据总线方式时VDD接地,可以节省一根传输线,但完成温度测量的时间较长;采用外部供电方式则接5V,多用一根导线,但测量速度较快。图3.1DS18B20外观3.1.3DS18B20的内部结构它主要由4部分组成:64位ROM、温度传感器、非易失性的温度报警触发器TH和TL、高速暂存器。64位ROM用于存储DS18B20序列号,其首字节固定为28H,表示产品类型码,后6个字节是每个器件的编码,最后1个字节是CRC校验码。温度报警触发