9-1-图像分割-概述

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

图像分割图像识别与人工智能研究所,多谱信息处理国家重点实验室陶文兵华中科技大学图像识别与人工智能研究所多谱信息处理技术国家重点实验室分割的目的和意义图像分割是计算机视觉研究中的基础问题和难点之一图像分割就是把图像分成各具特性的区域并提取出感兴趣目标图像分割的难点和挑战性对一般图像中的大量视觉模型进行建模的复杂性图像理解本身的内在模糊性当没有一个明确的任务来指导注意机制2图像理解图像分析图像处理目标识别特征提取图像分割原始图像高低语义抽象程度小大操作对象数据语义符号目标描述原始像素图像工程的三层模型imagesegmentation…Goal:BreakuptheimageintomeaningfulorperceptuallysimilarregionsTypesofsegmentationsOversegmentationUndersegmentationMultipleSegmentationsSegmentationasaresultRotheretal.2004Segmentationforefficiency[FelzenszwalbandHuttenlocher2004][Hoiemetal.2005,Mori2005][ShiandMalik2001]SegmentsasprimitivesforrecognitionJ.TigheandS.Lazebnik,submittedtoECCV2010MajorprocessesforsegmentationBottom-up:grouptokenswithsimilarfeaturesTop-down:grouptokensthatlikelybelongtothesameobject[LevinandWeiss2006]Bottom-upsegmentation•Grouptogethersimilar-lookingpixelsforefficiencyoffurtherprocessing“Bottom-up”processUnsupervisedX.RenandJ.Malik.Learningaclassificationmodelforsegmentation.ICCV2003.“superpixels”Thegoalsofsegmentation•Separateimageintocoherent“objects”“Bottom-up”or“top-down”process?Supervisedorunsupervised?Berkeleysegmentationdatabase:E.BorensteinandS.Ullman,“Class-specific,top-downsegmentation,”ECCV2002A.LevinandY.Weiss,“LearningtoCombineBottom-UpandTop-DownSegmentation,”ECCV2006.Top-downsegmentationE.BorensteinandS.Ullman,“Class-specific,top-downsegmentation,”ECCV2002A.LevinandY.Weiss,“LearningtoCombineBottom-UpandTop-DownSegmentation,”ECCV2006.NormalizedcutsTop-downsegmentation图像分割方法的发展现状目前图像分割方法主要有三个比较重要的方向:基于统计理论的图像分割方法MeanShift,DDMCMC…基于变分模型的图像分割方法SnakeModel,GAC,M-SModel,C-VModel…基于图论的图像分割方法GraphCuts,NormalizeCuts…14ThreebasictheoryinImageSegmentationStatisticsVariationalGraphTwobasicModelinImageSegmentationStatisticsformulationVariationalModelEnergyModelsOptimizationMethodBayesianformulationBayesianformulation(GemanandGeman,1984)Geman,S.andD.Geman:1984,“Stochasticrelaxation,Gibbsdistributions,andtheBayesianrestorationofimages”.IEEETransactionsonPatternAnalysisandMachineIntelligence6,721–741.(13641),(,)()()()()(,)datasmoothpppqpqppqELELELDLVLLPNDpisadatapenaltyfunction,Vp,qisaninteractivefunctionDatapenaltiesindicateindividuallabel-preferencesofpixelsbasedonobservedintensitiesandprespecifiedlikelihoodfunction.Interactionfunctionencouragespatialcoherencebypenalizingdiscontinuitiesbetweenneighboringpixels.MAP-MRF:Maximumaposteriori-MarkovrandomfieldSnakemodel(Kassetal.,1988)Kass,M.,A.Witkin,andD.Terzopoulos:1988,“Snakes:Activecontourmodels”.InternationalJournalofComputerVision,vol.1,pp.321–331(13622)SnakemodelInternalenergyThefirsttwotermscontrolthesmoothnessofthecontourstobedetected.ExternalenergyThethirdtermisresponsibleforattractingthecontourtowardstheobjectintheimage.Geodesicactivecontoursmodel(GAC)(Casellesetal.,1997)V.Caselles,R.Kimmel,andG.Sapiro,“Geodesicactivecontours,”Int.J.Comput.Vis.,vol.22,pp.61–79,1997.(3709)1/(1)gI()0()(())LCbECgCsdsRemarks:Thefunctiongisanedgeindicatorfunctionthatvanishesatobject.Theshorterthecurve,thelargerthegradientofthecurve,thelesstheenergy.Edge-basedActiveContourGeodesicactivecontoursmodelMumfordandShahfunctional(MumfordandShah,1989)Mumford,D.andJ.Shah:1989,‘Optimalapproximationsbypiecewisesmoothfunctionsandassociatedvariationalproblems’.CommunicationsonPureandAppliedMathematics42,577–685.(3122)Mumford-Shahfunctional220\(,)()MSCFuCuudxudxCRemarks:TheminimizationofMumford-ShahfunctionalresultsinanoptimalcontourCthatsegmentsthegivenimageu0intoseveralregions.Imageuisanoptimalpiecewisesmoothapproximationofthegivenimageu0ImageuissmoothwithineachoftheconnectedcomponentsintheimagedomainseparatedbythecontourC.CVModel-piecewiseconstantMSmodel(ChanandVese,2001)T.ChanandL.Vese,“Activecontourswithoutedges,”IEEETrans.ImageProcess.,vol.10,no.2,pp.266–277,Feb.2001.Citedtimes:4514Region-basedActiveContour122212101202(,,)((,))((,))CVFccCuxycuxycdsRemarks:Assumethatuisapiecewiseconstantfunction.Forsuchcase,thesecondtermdisappearsfromtheMSfunctions.Twophaseproblem,c1istheaverageofregion1,c2istheaverageofregion2.Chan-Vese(CV)modelOptimizationMethod1、模拟退火(simulatedannealing)2、水平集算法(LevelSet)3、图割算法(Graphcuts)4、期望最大化算法(Expectation-Maximization—EM)5、置信传播(Beliefpropagation)4、对偶算法(primaldual)

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功