第二章张量分析2.1标量的张量值函数的导数tttttt)()(limdd0TTTtttddddd)d(STST自变量是标量,函数是张量,如T=T(t),则(设T±S是有意义的)tttddddd)d(TTTtttddddd)d(STSTSTtttddddd)d(aTaTaTTTddddttTT2.1标量的张量值函数的导数(是标量)(a是矢量)直接根据导数的定义证明上述公式,例如:ttttttttttttttttttttttttt)()()()(lim)()()()(lim)()()()(limd)d(000aTaTaTaTaTaTaTtttttttttttttttdddd)()(lim)()()()(lim00aTaTaaTaTT此外,在直角坐标系中tTtddddjijiTjijiddddeTeTtt0eettddddjijijijijidddd)(ddddttttTTeTeeTe且例题:设为二阶正交张量,证明是一个反对称张量。)(tQQTddQQt证:IQQT0QQQQttddddTT,TTddddQQQQtt即(1)TTTTddddddQQQQQQttt(2)比较(1)和(2):TTTddddQQQQtt满足反对称张量定义,证毕2.2梯度2.2.1标量场的梯度2.2.1标量场的梯度iiiieex2.2.1标量场的梯度2.2.2矢量场的梯度2.2.2矢量场的梯度矩阵形式333231232221131211][xaxaxaxaxaxaxaxaxaa2.2.2矢量场的梯度2.2.2矢量场的梯度2.2.2矢量场的梯度2.2.3张量场的梯度2.2.3张量场的梯度2.3散度2.3.1矢量场的散度2.3散度2.3.1矢量场的散度2.3散度2.2.2张量场的散度2.3散度2.2.2张量场的散度2.4旋度2.4.1矢量场的旋度2.4旋度2.4.1矢量场的旋度2.4旋度2.4.1矢量场的旋度2.4旋度2.4.1矢量场的旋度2.4旋度2.4.2张量场的旋度2.4旋度2.4.2张量场的旋度2.5双重微分算子2.6张量函数的导数2.6.1张量函数自变量是张量,而函数值是标量、矢量和张量的函数,如)(),(jiBffffB)(),(ijkkBaaBaa)(),(ijklklBTTBTT一般而言,这些分量函数的形式在不同坐标系中是不同的。如果它们对所有的正交基都是相同的,则称为各向同性张量函数。2.6张量函数的导数2.6.2张量函数的梯度2.6张量函数的导数2.6.2张量函数的梯度注意:2.6张量函数的导数2.6.2张量函数的梯度例如:22112212)(41)(BBBf12211212)(21BBBBf2.6张量函数的导数2.6.2张量函数的梯度2.6张量函数的导数2.6.2张量函数的梯度riir1BI,1.7.4张量的并积设分别为m和n阶张量,它们的并积为,则BA,C))((nm1mnm1mm1m1iiiiiiiieeBACBAnm1nm1iiiieCnm1mm1nm1iiiiiiBAC可见,其结果张量是m+n阶的。C1.7.5张量的点积矢量a,b的点积:iijijijijijjii)()()(bababababaeeee换指标1.7.5张量的点积张量T,S(设为二阶)的点积:nmjinmjinmnmjiji)()()(eeeeeeeeSTSTSTnimjnmjinmjinmji)(eeeeeeSTSTninininmmi)(eSTeeST矩阵形式:][][][TSTS设均为二阶张量,用基张量表示点积,并证明(作业)TSR,,TS)(RT)(SR一般地,任意个二阶张量依次点积,结果仍为二阶张量,即jijqpqnmmieVUSRVUSRjijqpqsrrinneAAAAAAAA张量的双重点积:若A为三阶张量,B为二阶张量,则ikjkjiinkmjnmkjinkmjinmkjinmnmkjikji))(()(:)(:eeeeeeeeeBABABABABA结果为一阶张量。张量的双重点积:若S,T均为二阶张量,则结果为零阶张量。jijinjminmjinjminmjinmnmjiji))(()(:)(:TSTSTSTSeeeeeeTS1.7.6张量的叉积两个矢量a,b的叉积:kjikjijijijjii)()(eeeeebabaebabakkjijieeee三个矢量a,b,c的叉积:已知,则kjikjiebabaemmkjikji)(eecbacbaennmkmjikjimkmjikjieeeecbaecbaenmjimjninjminmjiknmkji)(eecbacbaeenmjimjnimjinjmi)(ecbacbanmmnmnm)(ecbacba三个矢量a,b,c的叉积:mmkjikji)(eecbacbaenmmnmnm)(ecbacbannmmnmm])()[(eacbbcac)a(bc)b(acba)(即试验证(作业):cb(ac)b(acba))(三个矢量的混合积:cba,,mkmjikjimmkjikji][cbaecbaeeebc)(aabc即kjikji][cbaeabc几何意义:以为边的棱柱体积,有向。cba,,换指标两个任意张量的叉积:BA,strjirstjirstrstjiji)()()(eeeeeeBABABAtskikstistkikrjrstjieeeeCeBAkrjrstjikstieBAC1.7.7二阶张量的迹矢量a,b并矢ab的迹定义为:iijijijijitrbababaeebaabjijijitreeee任意二阶张量T的迹:iijijijijijijitr)(trtrTTTTeeeeTT的主对角线之和。例:在直角坐标系下,各向同性牛顿流体的本构方程为:jikkjijiji2DDpT应力张量静水压力粘性系数变形速率张量试写出它的不变式和迹。jikkjijiji2DDpT