Hedging with risk for game options in discrete tim

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

HEDGINGWITHRISKFORGAMEOPTIONSINDISCRETETIME.YANDOLINSKYANDYURIKIFERINSTITUTEOFMATHEMATICSHEBREWUNIVERSITYJERUSALEM,ISRAELAbstract.Westudytheproblemsofefficienthedgingofgame(Israeli)op-tionswhentheinitialcapitalintheportfolioislessthanthefairoptionprice.Inthiscaseaperfecthedgingisimpossibleandonecanonlytrytominimisetherisk(whichcanbedefinedindifferentways)ofhavingnotenoughfundsintheportfoliotopaytherequiredamountattheexcercisetime.Wesolvetheminimizationproblemsandfindviadynamicalprogrammingappropriateefficienthedgingstrategiesfordiscretetimegameoptionsinmultinomialmar-kets.TheapproachandsomeoftheresultsarenewalsoforstandardAmericanoptions.1.IntroductionThegame(Israeli)optionswereintroducedin[6]inastandardfinancialmarketwhichconsistsofanonrandomcomponentBtdescribedasasavingsaccountattimetwithaninterestrandofarandomcomponentStdescribedasthepriceofastockattimet.Theformalsetupconsistsofaprobabilityspace(Ω,F,P)togetherwithastochasticprocessSt≥0,t∈Z+(discretetime),ort∈R+(continuoustime)describingthepriceofaunitofthestock,ofarightcontinuousfiltration{Ft},andoftworightcontinuouswithleftlimitsstochasticpayoffprocessesXt≥Yt≥0adaptedtothegivenfiltration.Thegamecontingentclaim(GCC)isdefinedasacontractbetweenthesellerandthebuyeroftheoption,suchthatbothhavetherighttoexerciseatanytimeuptoamaturitydate(horizon).IfthebuyerexercisesthecontractattimetthenhegetsthepaymentYt,butifthesellercancelsbeforethebuyerthenthelatterreceivesthepaymentXt.Thedifferenceδt=Xt−Ytisthepenaltywhichthesellerpaystothebuyerforthecontractcancellation.AhedgeagainstGCCisdefinedasapair(π,σ)whichconsistsofaselffinancingstrategyπ(i.e.atradingstrategywithnoconsumptionandnoinfusionofcapitalsothatonlytransferbetweenstockandbondaccountsareallowed)andacancellationtimeofthecontractσ,whichisastoppingtimewithrespecttothegivenfiltration.Iftheseller’scancellationtimeisσandthebuyer’sexercisetimeisτthenthebuyergetsthepaymentH(σ,τ)=Xσχ{στ}+Yτχ{τ≤σ},whereχQ=1ifaneventDate:November1,2006.2000MathematicsSubjectClassification.Primary91B28:Secondary:60G40,91A05,62L15,91B30.Keywordsandphrases.gameoptions,risk,hedging,optimalstopping.PartiallysupportedbytheISFgrantno.130/06.12Y.DolinskyandY.KiferQoccursand=0ifnot.Ahedgeiscalledperfectifnomatterwhatexercisetimethebuyerchooses,thesellercancoverhisliabilitytothebuyer(withprobabilityone).TheoptionpriceV∗isdefinedastheminimalinitialcapitalthatrequiredforaperfecthedge,i.e.foranyxV∗thereisaperfecthedgewithaninitialcapitalx.Itwasshownin[6]thatpricingtheoptioninacompletemarketsleadstoazerosumoptimalstoppinggame(Dynkin’sgame)withthediscountedpayoffs˜Xt=B0XtBtand˜Yt=B0YtBt,undertheuniquemartingalemeasureP∗∼PwhichmeansthattheoptionpriceistheDynkingamevaluewhenthepayoffsare˜Xt,˜Yt,andtheprobabilitymeasureisP∗.Foranyselffinancingstrategyπthewealthprocesscorrespondingtoπisastochasticprocess{Vπt}suchthatVπtistheportfoliovalueofπatthemomentt.Inthispaperwedefinehedgeasapair(π,σ)withtherestrictionthatthewealthprocesscorrespondingtoπshouldbepositiveandsuchselffinancingstrategyπwillbecalledadmissible.Itiseasytocheckthattheresultsfrom[6]describedaboveremainvalidunderthisrestriction.Observethatgameoptionsinincompletemarketswerestudiedin[5]usingtheoptionaldecompositiontheorem(see[8]).Foradditionalinformationaboutpricingofgameoptionswereferthereaderto[6],[9]and[10].Inarealmarketconditionsaninvestor(seller)maynotbewillingforvariousreasonstotieinahedgingportfoliothefullinitialcapitalrequiredforaperfecthedge.Inthiscasethesellerisreadytoacceptariskthatatanexcercisetimehisportfoliovaluewillbelessthanhisobligationtopayandhewillneedadditionalfundstofulfilthecontract.Thisleadstothenaturalquestionofminimizationofriskforagivensmalleramountofinitialcapital.Inordertomakethisquestionpreciseweneedtodefineexplicitlytheriskmeasure.MostofourstudywillberelatedtotheminimizationoftheshortfallriskforgameoptionswhichisdefinedasR(π,σ)=supτEl˜H(σ,τ)−B0Vπσ∧τBσ∧τ)+,wherelisanondecreasingcontinuouslossfunction,Vπtisthewealthprocessofanadmissibleselffinancingstrategyπ,˜H(σ,τ)isthediscountedpayment,andEdenotestheexpectationwithrespecttotheobjectiveprobabilityP.WeadmitonlystrategiesπforwhichVπt≥0forallt,i.e.borrowingisprohibited,butsimilarresultscanbeobtainedwithoutimposinganylowerboundonVt.Thereasonthatwetakeasupremumoverallstoppingtimesisthatthesellerdoesnotknowwhenthebuyerwillexerciseandsoheshouldconsidertheworstcase,i.e.wewanttominimizethelargestpossibleexpectationoftheshortfallwhichisweightedbyagivenlossfunction.TheproblemofminimizationofshortfallriskshasbeenmostlystudiedintheEuropeanoptionscase(see,forinstance,CvitaniˆcandKaratzas[1],F¨ollmerandLeukert[3],ScagnellatoandVargiolu[16]).Forcontinuoustimemodels(see[1],[3])theauthorsusedapproachesconnectedwiththeNeyman-PearsonLemmaandconvexdualitymethods,whichdonotworkforAmericanandIsraelioptionscase.RecentlyMulinacci[12]studiedtheshortfallriskfortheAmericanoptionscaseprovingthatifthelossfunctionisconvexthereisahedgethatminimizestheshortfallriskunderaconstraintontheinitialcapital.Theproofreliedheavilyonthefactthattheshortfallriskinthiscaseisaconvexfun

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功