时钟抖动测量Page22009-12-16简介简介抖动的峰峰值和有效值•Pk-pkjitter,RMSjitterJTA2抖动分析软件包的功能•JitterTrack•JitterHistogram•JitterFFTPage32009-12-16抖动定义抖动定义抖动的定义为“信号的定时事件与其理想位置之间的偏差”。•SONETSPEC:Jitterisdefinedastheshort-termvariationsofadigitalsignal’ssignificantinstantsfromtheiridealpositionsintime.按待测试信号的种类来划分•时钟抖动•数据抖动按计算方法来划分•TIE抖动:信号周期相对于一个已知或恢复时钟的误差。•Period抖动:是在多个周期内对信号周期的变化进行的测量。•CycletoCycle抖动:是对信号相邻周期的变化进行测量的结果。•HalfPeriod抖动:半个周期的抖动变化(与Periodjitter的计算类似)Page42009-12-16抖动定义(续)抖动定义(续)Pk-pkjitter:峰峰值抖动随着测量时间的增加,测量值变大,测试结果不具备重复性,不能将jitter值与误码率(BER)直接联系起来•RMSjitter:抖动测量值的有效值Totaljitter:在某BER下总的抖动值。测量Tj(BER)的目的是在某BER下确保互操作性•通常TJ是针对串行数据的•一般测量Tj(BER=10e-12)•一般是数据信号测试Tj和Dj•Tj(BER10e-8)只能用BERT测量到,但是示波器可以精确的估算出该值•Tj可以分解为Rj,Dj,DCD,ISI,PjPage52009-12-16三种抖动计算举例三种抖动计算举例某100MHz时钟,第一个到第四个周期分别为9.9ns,10.1ns,9.9ns,10.0ns,假设其理想时钟固定在10ns•TIEJitter:•T1=10-9.9=0.1,T2=10-10.1=-0.1,T3=10-9.9=0.1T4=10-10=0•TIEpk-pkjitter=0.1–(-0.1)=0.2ns•TIERMSjitter=参数T1..T4的标准偏差•PeriodJitter•P1=9.9P2=10.1P3=9.9P4=10•PeriodJitterpk-pkvalue=10.1-9.9=0.2ns•PeriodJitterRMSvalue=参数P1..P4的标准偏差•CycletoCyclejitter•C1=P2-P1=10.1-9.9=0.2C2=P3-P2=9.9-10.1=-0.2C3=P4-P3=10-9.9=0.1•CycletocyclejitterPK-PKvalue=0.4ns•CycletocyclejitterRMSvalue=参数C1..C4的标准偏差标准偏差的计算公式1)(2−−∑nXmeanXiPage62009-12-16传统的抖动测试方法:余辉显示传统的抖动测试方法:余辉显示设置非常简单,使用cursor测量波形边沿的宽度像素或屏幕分辨率(量化误差)会降低精度只有单个波形,引入了触发抖动Page72009-12-16时钟常见的三种抖动测量时钟常见的三种抖动测量CycletocyclejitterperiodjitterTIEjitter必须配备JTA2软件包才可以测量三种抖动Page82009-12-16JitterHistogramsJitterHistogramsPage92009-12-16快速设置TIE直方图快速设置TIE直方图Step1:TIE直方图的快速设置方法Step2:测量参数选择TIEStep3:图形选择“Histogram”Step4:设置相关参数Page102009-12-16设置TIE参数设置TIE参数查找TIE的参考时钟Page112009-12-16设置TIE直方图的参数设置TIE直方图的参数设置TIE直方图的参数Page122009-12-16测量直方图测量直方图Step1:选择P2=hsdev(F8)直方图的range为抖动峰峰值直方图的sdev为抖动RMS值Page132009-12-16TIE的测量TIE的测量TIEjitter的峰峰值与RMS值Page142009-12-16SinusoidalJitterSinusoidalJitter周期性抖动Page152009-12-16RandomJitterRandomJitterPage162009-12-16几种抖动理论上的关系几种抖动理论上的关系ReferenceFrequencyWaveformWithJitterDistributionsOfEdgeLocationsTIEMeasurementSingleEdge,Jitter=JnWidthMeasurementTwoEdges,Jitter=SQRT(Jn2+Jn+12)=1.41JnPeriodMeasurementTwoEdges,Jitter=SQRT(Jn2+Jn+22)=1.41JnCycletoCycleMeasurementThreeEdges,Jitter=SQRT(Jn2+4Jn+12+Jn+22)=SQRT(6)JnPage172009-12-16RuleofThumbRuleofThumbTIE=JnWidth=√2JnPeriod=√2JnCycle-Cycle=√6JnPeriod/TIE=√2Cyc-Cyc/Period=√3AlltheabovecanvarydependingonspecificmeasurementsetupTherelationshipbetweenCycletocycleandperiodisthemostrepeatable.Theserelationshipsdon’talwaysshowup!Page182009-12-16JitterTrackJitterTrackPage192009-12-16JitterTrack抖动追踪JitterTrack抖动追踪JitterTrack波形:X轴为时间,Y轴为某时间的抖动测量值•反映了抖动测量值随时间变化的趋势•测量jittertrack波形的峰峰值即可得到该抖动的峰峰值•测量jittertrack波形的标准偏差即可得到抖动的有效值•通过jittertrack功能可以找到调制(或干扰)到时钟的信号Page202009-12-16TheJitterTrack™FunctionPeriodJitterFunctionP1P2P3PN-1PNP1P2P3PN-1PNSourceTrace......PeriodJitterPage212009-12-16TheJitterTrack™FunctionTimeIntervalError(TIE)IntervalErrorJitterFunctionI1I2I3IN-1INI1I2I3IN-1INSourceTrace...ReferenceClockEdge...Page222009-12-16TheJitterTrack™FunctionFrequencyJitterFunctionP1P2P3PN-1PN1/P11/P21/P31/PN-11/PNSourceTrace......FrequencyJitterPage232009-12-16时钟的抖动追踪时钟的抖动追踪Page242009-12-16抖动追踪案例2抖动追踪案例2通过对track(freq(c1))的波形做FFT,可以在频谱中观察到该时钟受到2.275MHz的干扰Page252009-12-16抖动追踪案例3-SATA的扩频时钟测试SerialATAWaveformUnfilteredTrackFilteredTrackConventionalTrackDisplayUniqueLeCroyFilteredTrackPage262009-12-16抖动追踪案例4:电源不稳定造成的抖动抖动追踪案例4:电源不稳定造成的抖动:电源不稳定造成的抖动ClocksignalTrack(period(c2))Track(TIE(c2))PowerRipplePage272009-12-16JTA2软件包括哪些功能?JTA2软件包括哪些功能?TIE、cycletocycle、period等的抖动测试抖动的直方图分析Jittertrack抖动追踪其他水平测量参数Page282009-12-16JTA2软件包中包括了以下测量参数JTA2软件包中包括了以下测量参数SymbolParameterNameParameterDefinitionΔp@lvdeltaperiodatlevelDifferenceofadjacentperiodsatspecifiedslopeandlevelfreq@lvfrequencyatlevelCyclefrequencyatspecifiedslopeandlevelduty@lvdutyatlevelPercentofperiodforwhichdataisaboveorbelowaspecifiedleveledge@lvedgeatlevelThenumberoftransitionsoredgeswithaspecifiedslopeandlevelp@lvperiodatlevelCycledurationataspecifiedslopeandleveltie@lvtimeintervalerroratlevelFractionalintervaltimeerrorforaspecifiedslopeandlevelwid@lvwidthatlevelDurationofsignalexcursionaboveorbelowaspecifiedlevelPage292009-12-16抖动测量精度VERTICALUNCERTAINTYDUETO:NOISEQUANTIZATIONNON-LINEARITYAMPLITUDETIMEHORIZONTALUNCERTAINTYDUETO:SIGNALJITTERAPERTUREUNCERTAINTYTRIGGERJITTERTIMEBASEINSTABILITYVERTICALUNCERTAINTY,ΔvMAPSINTOTIMEUNCERTAINTY,ΔtΔt=(Δv*tR(20-80))/0.6vAMPLUNCERTAINTIESAREUNCORRELATEDANDADDINQUADRATUREΔvvAMPLΔtΔt通道的噪声、频响的非线性、ADC的量化误差导致了垂直方向测量的不确定性垂直方向的不确定性投影到水平方向导致时间的不确定性信号的上升时间越快,抖动的测量精度越高使用高精度的ADC可以提高抖动测量精度通道噪声越小,抖动测量精度越高对于频率较低、抖动很小的时钟测试,可以适当使用ERES降噪后测量抖动Page302009-12-16GaussianDistributionGaussianDistributionRandomjitterisdistributedasgaussian.68.28%ofpopulationisin+/-1σrange95.45%in+/-2σrange99.73%in+/-3σrange99.994%in+/-4σrange99.99994%in+/-5σrange99.9999998%in+/-6σrange99.9999999997%inin+/-7σrange68.27%Page312009-12-16GaussianDistributionGaussianDistribution68.28%ofpopulationisin+/-1σrangemeans31.73%ofpopulationisoutof+/-1σ.Recognize