加菲尔德证法加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,,,“总统证法”示意图∵欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在这个定理的证明中,我们需要如下四个辅助定理:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。分别连接CF、AD,形成△BCF、△BDA。∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。因为AB=FB,BD=BC,所以△ABD≌△FBC。因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。因此四边形BDLK=BAGF=AB²。同理可证,四边形CKLE=ACIH=AC²。把这两个结果相加,AB²+AC²=BD×BK+KL×KC由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。