微积分作业(对外经济贸易大学远程教育)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、导数的运算1,已知2211xxy,则y=()。A,)1(22xxB,2)1(4xxC,22)1(2xxD,22)1(4xx解222222)1()1()1()1()1(xxxxxy2222)1(2)1()1(2xxxxx22)1(4xx。2xxycos22,则y=()。A,xxxxxcossin2cos42B,xxxxx2cossin2cos4C,xxxxx22cossin2cos4D,xxxx22cossin2cos4解)cos/2(2xxyxcoxxxxx222)(coscos)(2xxxxx22cos)sincos2(2xxxxx22cossin2cos4。32sinxy,则y=()。A,2cosxB,2cos2xxC,2cos2xD,xxcos2令2xu,则uysin,uyucos,xux2,所以xuxuyyuxcos22cos2xx。4)1ln(2xxy,则y=()。A,211xB,211xxC,212xxD,212xx令y=lnu,21vxu,v=1+x2则uyu1,121211vuv,xvx2所以xvuxvuyy211x。今后可约定yyx,省略下x标。53)sin(lnxy,则y=()。A,23)(ln)cos(lnxxB,3)cos(lnxC,)(ln)cos(ln33xxxD,23)(ln)cos(ln3xxx令vysin,3uv,xuln,,则xuvuvyyxuv13cos223)(ln)cos(ln3xxx。6:xy2sin3,则y=()。A,xx2sin32cos2B,3ln2cos2xC,3ln32cos22sinxxD,3ln32cos2sinxx解3ln22cos32sinxyx3ln32cos22sinxx。7,设函数)2arccos(xey,则dxdy等于()A.2)2arccos(41xexB.2)2arccos(412xexC.2)2arccos(212xexD.2)2arccos(12xex解答:)()2arccos(xey=])2[arccos()2arccos(xex=)2(412)2arccos(xxex=2)2arccos(412xex8,导数是31x的函数是()A,3212xB,2414xC,1414xD,4212x解答:)321(2x=)(212x=x-39,函数31x的导数是()A,23xB,43xC,23xD,43x解答:)1(3x=)(3x=-3x-410,设xy2sin,则y=()。A,2x2sinB,2xdx2sinC,x2sinD,xdx2sin,2sincossin2)(sin2xxxxy11,设xyln1,则y=()A,xxln11B,xxln121C,xln11D,xln1212,bxeyaxsin,则y=()A,)sincos(bxabxbeaxB,)sincos(bxabxbeaxC,)sincos(bxabxbeaxD,)sincos(bxabxbeax)sin(bxeddyaxbxbxdeaxsin)(sin·axdeaxe·bxbxbxdsin)(cos·)(axdeaxdxbxeabxdxbeaxaxsin)(cosdxbxabxbeax)sincos(。13,)(21x=(),A,2121xB,2121xC,2321xD,2321x14,)(2xe=()A,xe2B,xe2C,xe22D,dxex2215,)(log2x=()A,ex2log2B,ex2log1C,dxx1D,x116,)5(x=()A,5ln5xB,x5C,dxx5D,5ln517,)2(lnx=()A,LnxB,x2C,x21D,x118,设y=sin7x,则y=()A,-7cos7xB,7cosxC,7cos7xD,cos7x19,设y=xcos(-x),则y=()A,cos(-x)-xsin(x)B,cos(-x)+xsin(-x)C,cos(-x)+sin(x)D,cos(-x)-sin(-x)20,)8(tgx=()A,x2cos1B,x2cos1C,xcos1D,xcos1一、导数的运算答案1,(D)2,(C)3,(B)4,(A)5,(D)6,(C)7,(B)8,(A)9,(D)10,(C)11,(B)12,(A)13,(D)14,(C)15,(B)16,(A)17,(D)18,(C)19,(B)20,(A)二、函数的微分1,21dx=(),A,2121xB,2121xdxC,2321xD,2321xdx2,xde2=()A,xe22B,xe2C,dxex22D,dxex223,xd2log=()A,ex2log1B,edxx2log1C,dxx1D,x14,xd5=()A,dxx5ln5B,5ln5xC,dxx5D,x55,xd2ln=()A,LnxdxB,x2dxC,x21dxD,x1dx6,dsin7x=()A,7cosxdxB,7cosxC,7cos7xdxD,7cos7x7,dcos(-x)=()A,-sinxdxB,sin(-x)dxC,sin(-x)D,-sin(-x)dx8,)1(tgxd=()A,dxx2cos1B,x2cos1C,dxxcos1D,xcos19,)2(ctgxd=()A,x2sin2B,dxx2sin1C,dxx2sin1D,dxx2sin210,xd2arcsin=()A,2412xB,,4122dxxC,,4122dxxD,,4112dxx11,)1arccos(xd=()A,,)1(112dxxB,,)1(112dxxC,,112dxxD,2)1(11x12,2darctgx=()A,dxxx412B,dxx211C,412xxD,211x13,xdarcctg3=()A,2913xB,,112dxxC,,9132dxxD,,9132dxx14,设xy2sin,则dy=()A,2x2sinB,2xdx2sinC,xdx2sinD,x2sinxdxxdxxdyxxxy2sincossin2,cossin2)(sin215,设xyln1,则dy=()A,xxdyln121B,dxxxdyln121C,dxxdyln121D,dxxdyln1116,bxeyaxsin,则dy=()A,dxbxabxbeax)sincos(B,dxbxabxbeax)sincos(C,)sincos(bxabxbeaxD,)sincos(bxabxbeax)sin(bxeddyaxbxbxdeaxsin)(sin·axdeaxe·bxbxbxdsin)(cos·)(axdeaxdxbxeabxdxbeaxaxsin)(cosdxbxabxbeax)sincos(。17,函数)5ln(tgxy的微分是()A,dxxtgxdycos1B,dxxdy)2sin(1C,dxtgxdy5D,dxxdy)2sin(2解答:)5ln(tgxddy=]5ln)[ln(tgxd=5ln)ln(dtgxd=)ln(tgxd=dtgxtgx1=dxxtgx2cos11=dxxxcossin1=dxx)2sin(218,设)21ln(1)(xxxf,则)('xf()。(A)xx21112(B)xx21112(C)xx21212(D)xx2121219,设函数)2arccos(xy,则0xdxdy等于()A.-1B.-2C.-3D.-4''0219.ln,|().13311....2222xxyyxABCD设则二、函数的微分答案1,(D)2,(C)3,(B)4,(A)5,(D)6,(C)7,(B)8,(A)9,(D)10,(C)11,(B)12,(A)13,(D)14,(C)15,(B)16,(A)17,(D)18,(C)19(B)20,(A)20,三、隐函数的导数1,y=f(x)由方程0sin2yxy决定,则xy=()。A,yxyxcos12B,yxyxcos1C,yxyxcos12D,yxyxcos12解将二元方程0sin2yxy两边对x求导,得0cos2xxyyxy,由此解得yxyxcos12。2,已知xyxyx2222,则由此方程决定的隐函数)(xfy的导数是()。A,yxyxdxdy1B,yxyxdxdy1C,yxyxdxdy1D,yxyxdxdy1对方程两边取微分,)2()2(22xdyxyxd,即dxydxydxd2)()2()(22,亦即dxydyydxxdyxdx22222,或dxyxdyyx)222()22(,于是yxyxdxdyy1。3,)(yxarctgy,则y等于()A.)(sin12yxB,2)(yxC,)(cos12yxD,2)(11yx解答:dy=darctg(x+y)=(dx+dy)/[1+(x+y)^2],即:dy=(dx+dy)/[1+(x+y)^2],等式两边合并dy=2)(yxdx,故:y=dy/dx=2)(yx4,已知x2+y2=1,则由此方程决定的隐函数)(xfy的导数是()。A.yxB,yxC,xyD,xy5,设方程2lnyexy确定y是x的函数,则dxdy()。(A)yexy(B)xeyy(C)yexy21(D)yexy'110.lnln(),|()..1.1.1.1xxyyxyyxyABeCDe设确定函数则解:两边取微分:d(xlny)=d(ylnx)然后按微分的乘法公式:lnydx+xd(lny)=lnxdy+yd(lnx)lnydx+x/ydy=lnxdy+y/xdxx/ydy-lnxdy=y/xdx-lnydx(x/y-lnx)dy=(y/x–lny)dx6,dy/dx=(y/x–lny)/(x/y-lnx)把x=1,y=1代入即可:dy/dx=1四、高阶导数1求y=ax的2阶导数,A.1axyB,axy)1(C,2axyD,2)1(axy2求y=sinx的2阶导数。A.xycosB,xycosC,xysinD,xysin3,函数2)12ln(xy的二阶导数为:()A.2)12(4xyB。2)12(8xyC.2)12(4xyD。2)12(8xy解答:])12[ln(2xy=])12[ln(2x=)12()12(2xx=)12(4x=1)12(4x])12[(41xy=)12()12(42xx=2)12(8x4,设)(u具有二阶导数,)(xxy,则''y()。(A))('2)(''xxx(B))(')(''xxx(C))(')(''xxxx(D))(xxy5,函数12xey的二阶导数为:()A.122xeyB.12)12(xexyC.12)12(2xexyD.124xey五、求函数的极限1,设)(xf6422xxx则有()A,)(lim2xfxB,

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功