27.2.1相似三角形的判定1--苏雷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

27.2.1相似三角形的判定(一)设计:苏雷2017-12-25学习目标:(1)会用符号“∽”表示相似三角形如△ABC∽△CBA;(2)知道当△ABC与△CBA的相似比为k时,△CBA与△ABC的相似比为1/k.(3)理解掌握平行线分线段成比例定理(4)在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析问题.(5)在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质.学习重点:理解掌握平行线分线段成比例定理及应用.学习难点:掌握平行线分线段成比例定理应用.学习过程:我复习、我思考(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且kACCACBBCBAAB.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′,∠B=∠B′,∠C=∠C′,且ACCACBBCBAAB.(3)问题:如果k=1,这两个三角形有怎样的关系?注意:(1)在相似多边形中,最简单的就是相似三角形。(2)用符号“∽”表示相似三角形如△ABC∽△CBA;(3)当△ABC与△CBA的相似比为k时,△CBA与△ABC的相似比为1/k.我探究、我发现活动1(教材P29页探究1)如图27.2-2),任意画两条直线l1,l2,再画三条与l1,l2相交的平行线l3,l4,l5.分别量度l3,l4,l5.在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB︰BC与DE︰EF相等吗?任意平移l5,再量度AB,BC,DE,EF的长度,AB︰BC与DE︰EF相等吗?操作画图,动手量度,小组讨论,共同交流,回答结果.归纳总结:平行线分线段成比例定理。在活动中,应重点关注:平行线分线段成比例定理中相比线段同线;活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l1,l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1,l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?归纳总结:平行线分线段成比例定理推论。我巩固、我提高。通过练习巩固平行线分线段成比例定理及其推论活动3练习问题:如图,在△ABC中,DE∥BC,AC=4,AB=3,EC=1.求AD和BD.活动4、教材31页第1、2题我归纳,我总结。活动5(1)谈谈本节课你有哪些收获.“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.(2)相似比是带有顺序性和对应性的:如△ABC∽△A′B′C′的相似比kACCACBBCBAAB,那么△A′B′C′∽△ABC的相似比就是k1CAACBCCBABBA,它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD=10)1.如图,△ABC∽△AED,其中DE∥BC,找出对应角并写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,找出对应角并写出对应边的比例式.3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功