函数点对称线对称及周期总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(xfy,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有)()(xfTxf都成立,那么就把函数)(xfy叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。2、对称性定义(略),请用图形来理解。3、对称性:我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式)()(xfxf奇函数关于(0,0)对称,奇函数有关系式0)()(xfxf上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(xfy关于ax对称)()(xafxaf)()(xafxaf也可以写成)2()(xafxf或)2()(xafxf简证:设点),(11yx在)(xfy上,通过)2()(xafxf可知,)2()(111xafxfy,即点)(),2(11xfyyxa也在上,而点),(11yx与点),2(11yxa关于x=a对称。得证。若写成:)()(xbfxaf,函数)(xfy关于直线22)()(baxbxax对称(2)函数)(xfy关于点),(ba对称bxafxaf2)()(bxfxaf2)()2(上述关系也可以写成或bxfxaf2)()2(简证:设点),(11yx在)(xfy上,即)(11xfy,通过bxfxaf2)()2(可知,bxfxaf2)()2(11,所以1112)(2)2(ybxfbxaf,所以点)2,2(11ybxa也在)(xfy上,而点)2,2(11ybxa与),(11yx关于),(ba对称。得证。若写成:cxbfxaf)()(,函数)(xfy关于点)2,2(cba对称(3)函数)(xfy关于点by对称:假设函数关于by对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于by对称。但在曲线c(x,y)=0,则有可能会出现关于by对称,比如圆04),(22yxyxc它会关于y=0对称。4、周期性:(1)函数)(xfy满足如下关系系,则Txf2)(的周期为A、)()(xfTxfB、)(1)()(1)(xfTxfxfTxf或C、)(1)(1)4(xfxfTxf或)(1)(1)4(xfxfTxf(等式右边加负号亦成立)D、其他情形(2)函数)(xfy满足)()(xafxaf且)()(xbfxbf,则可推出)](2[)]2([)]2([)2()(abxfbxabfbxabfxafxf即可以得到)(xfy的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足)()(xfTxf则可以推出其周期是2T,且可以推出对称轴为kTTx22)(zk,根据)2()(Txfxf可以找出其对称中心为)0(kT,)(zk(以上0T)如果偶函数满足)()(xfTxf则亦可以推出周期是2T,且可以推出对称中心为)0,22(kTT)(zk,根据)2()(Txfxf可以推出对称轴为kTTx2)(zk(以上0T)(4)如果奇函数)(xfy满足)()(xTfxTf(0T),则函数)(xfy是以4T为周期的周期性函数。如果偶函数)(xfy满足)()(xTfxTf(0T),则函数)(xfy是以2T为周期的周期性函数。二、两个函数的图象对称性1、)(xfy与)(xfy关于X轴对称。换种说法:)(xfy与)(xgy若满足)()(xgxf,即它们关于0y对称。2、)(xfy与)(xfy关于Y轴对称。换种说法:)(xfy与)(xgy若满足)()(xgxf,即它们关于0x对称。3、)(xfy与)2(xafy关于直线ax对称。换种说法:)(xfy与)(xgy若满足)2()(xagxf,即它们关于ax对称。4、)(xfy与)(2xfay关于直线ay对称。换种说法:)(xfy与)(xgy若满足axgxf2)()(,即它们关于ay对称。5、)2(2)(xafbyxfy与关于点(a,b)对称。换种说法:)(xfy与)(xgy若满足bxagxf2)2()(,即它们关于点(a,b)对称。6、)(xafy与)(bxy关于直线2bax对称。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功