BP神经网络matlab教程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

概述Rumelhart,McClelland于1985年提出了BP网络的误差反向后传BP(BackPropagation)学习算法BP算法基本原理利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。J.McClellandDavidRumelhart2.4.1BP神经网络模型三层BP网络2.4.1BP神经网络模型激活函数必须处处可导一般都使用S型函数使用S型激活函数时BP网络输入与输出关系输入输出1122...nnnetxwxwxw1f()1enetynet2.4.1BP神经网络模型输出的导数211f'()(1)1e(1e)-netnetnetyy根据S型激活函数的图形可知,对神经网络进行训练,应该将net的值尽量控制在收敛比较快的范围内2.4.2BP网络的标准学习算法学习的过程:神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。学习的本质:对各连接权值的动态调整学习规则:权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。2.4.2BP网络的标准学习算法-算法思想学习的类型:有导师学习核心思想:将输出误差以某种形式通过隐层向输入层逐层反传学习的过程:信号的正向传播误差的反向传播将误差分摊给各层的所有单元---各层单元的误差信号修正各单元权值2.4.2BP网络的标准学习算法-学习过程正向传播:输入样本---输入层---各隐层---输出层判断是否转入反向传播阶段:若输出层的实际输出与期望的输出(教师信号)不符误差反传误差以某种形式在各层表示----修正各层单元的权值网络输出的误差减少到可接受的程度进行到预先设定的学习次数为止2.4.2BP网络的标准学习算法网络结构输入层有n个神经元,隐含层有p个神经元,输出层有q个神经元变量定义输入向量;隐含层输入向量;隐含层输出向量;输出层输入向量;输出层输出向量;期望输出向量;12,,,nxxxx12,,,phihihihi12,,,phohohoho12,,,qyiyiyiyi12,,,qyoyoyoyo12,,,qdddod2.4.2BP网络的标准学习算法输入层与中间层的连接权值:隐含层与输出层的连接权值:隐含层各神经元的阈值:输出层各神经元的阈值:样本数据个数:激活函数:误差函数:ihwf()howhb1,2,kmob211(()())2qoooedkyok2.4.2BP网络的标准学习算法第一步,网络初始化给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精度值和最大学习次数M。第二步,随机选取第个输入样本及对应期望输出k12()(),(),,()nkxkxkxkx12()(),(),,()qkdkdkdkod2.4.2BP网络的标准学习算法第三步,计算隐含层各神经元的输入和输出1()()1,2,,nhihihihikwxkbhp()f(())1,2,,hhhokhikhp1()()1,2,pohohohyikwhokboq()f(())1,2,ooyokyikoq2.4.2BP网络的标准学习算法第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数。ohoohoeeyiwyiw(())()()phohoohhhohowhokbyikhokww211((()()))2(()())()(()())f(())()qoooooooooooodkyokedkyokyokyiyidkyokyikk()ok2.4.2BP网络的标准学习算法()()oohhoohoeeyikhokwyiw1()()(())()()hihhihnihihhiiihiheehikwhikwwxkbhikxkww第五步,利用隐含层到输出层的连接权值、输出层的和隐含层的输出计算误差函数对隐含层各神经元的偏导数。()hk()ok2.4.2BP网络的标准学习算法21212111((()()))()2()()()1((()f(())))()2()()1(((()f(())))()2()()qoohohhhqoohohhqpohohohohhhdkyokehokhikhokhikdkyikhokhokhikdkwhokbhokhokhik11()(()())f(())()(())f(())()qhooohoohqohohhohokdkyokyikwhikkwhikk2.4.2BP网络的标准学习算法第六步,利用输出层各神经元的和隐含层各神经元的输出来修正连接权值。1()()()()()hoohhoNNhohoohewkkhok()ok()howk2.4.2BP网络的标准学习算法第七步,利用隐含层各神经元的和输入层各神经元的输入修正连接权。()hk1()()()()()()()hihhiihhihNNihihhieehikwkkxkwhik2.4.2BP网络的标准学习算法第八步,计算全局误差第九步,判断网络误差是否满足要求。当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。2111(()())2qmookoEdkykm2.4.2BP网络的标准学习算法BP算法直观解释情况一直观表达当误差对权值的偏导数大于零时,权值调整量为负,实际输出大于期望输出,权值向减少方向调整,使得实际输出与期望输出的差减少。whohoewe0,此时Δwho02.4.2BP网络的标准学习算法BP算法直解释情况二直观表达当误差对权值的偏导数小于零时,权值调整量为正,实际输出少于期望输出,权值向增大方向调整,使得实际输出与期望输出的差减少。hoewe0,此时Δwho0who2.4.3BP神经网络学习算法的MATLAB实现MATLAB中BP神经网络的重要函数和基本功能函数名功能newff()生成一个前馈BP网络tansig()双曲正切S型(Tan-Sigmoid)传输函数logsig()对数S型(Log-Sigmoid)传输函数traingd()梯度下降BP训练函数2.4.3BP神经网络学习算法的MATLAB实现MATLAB中BP神经网络的重要函数和基本功能newff()功能建立一个前向BP网络格式net=newff(PR,[S1S2...SN1],{TF1TF2...TFN1},BTF,BLF,PF)说明net为创建的新BP神经网络;PR为网络输入取向量取值范围的矩阵;[S1S2…SNl]表示网络隐含层和输出层神经元的个数;{TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;BTF表示网络的训练函数,默认为‘trainlm’;BLF表示网络的权值学习函数,默认为‘learngdm’;PF表示性能数,默认为‘mse’。2.4.3BP神经网络学习算法的MATLAB实现MATLAB中BP神经网络的重要函数和基本功能tansig()功能正切sigmoid激活函数格式a=tansig(n)说明双曲正切Sigmoid函数把神经元的输入范围从(-∞,+∞)映射到(-1,1)。它是可导函数,适用于BP训练的神经元。logsig()功能对数Sigmoid激活函数格式a=logsig(N)说明对数Sigmoid函数把神经元的输入范围从(-∞,+∞)映射到(0,1)。它是可导函数,适用于BP训练的神经元。2.4.3BP神经网络学习算法的MATLAB实现例2-3,下表为某药品的销售情况,现构建一个如下的三层BP神经网络对药品的销售进行预测:输入层有三个结点,隐含层结点数为5,隐含层的激活函数为tansig;输出层结点数为1个,输出层的激活函数为logsig,并利用此网络对药品的销售量进行预测,预测方法采用滚动预测方式,即用前三个月的销售量来预测第四个月的销售量,如用1、2、3月的销售量为输入预测第4个月的销售量,用2、3、4月的销售量为输入预测第5个月的销售量.如此反复直至满足预测精度要求为止。月份123456销量205623952600229816341600月份789101112销量1873147819001500204615562.4.3BP神经网络学习算法的MATLAB实现%以每三个月的销售量经归一化处理后作为输入取P1中最大元素和最小元素分别为Pmax=2600,Pmin=1478,则归一化后P的对应元素值为P=(P1-Pmin)/(Pmax-Pmin)P=[0.51520.81731.0000;0.81731.00000.7308;1.00000.73080.1390;0.73080.13900.1087;0.13900.10870.3520;0.10870.35200.0000;]';%以第四个月的销售量归一化处理后作为目标向量T=[0.73080.13900.10870.35200.00000.3761];%创建一个BP神经网络,每一个输入向量的取值范围为[0,1],隐含层有5个神经%元,输出层有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为%logsig,训练函数为梯度下降函数,即2.3.2节中所描述的标准学习算法net=newff([01;01;01],[5,1],{'tansig','logsig'},'traingd');net.trainParam.epochs=15000;net.trainParam.goal=0.01;%设置学习速率为0.1LP.lr=0.1;net=train(net,P,T);

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功