电力拖动自动控制系统系统课程总结..

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电力拖动自动控制系统课程总结一、内容提要直流调速系统;单闭环直流调速系统双闭环直流调速系统直流调速系统的数字控制交流调速系统;异步电动机变压调速系统异步电动机变压变频调速系统异步电动机双馈调速系统二、直流调速系统单闭环直流调速系统1晶闸管-电动机系统(V-M系统)晶闸管-电动机调速系统(简称V-M系统,又称静止的Ward-Leonard系统),VT是晶闸管可控整流器,通过调节触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变整流电压Ud,从而实现平滑调速。静止式可控整流器图1-1晶闸管可控整流器供电的直流调速系统(V-M系统)•V-M系统的问题由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。晶闸管对过电压、过电流和过高的dV/dt与di/dt都十分敏感,若超过允许值会在很短的时间内损坏器件。由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。V-M系统的几个主要问题:(1)触发脉冲相位控制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和传递函数。•(1)触发脉冲相位控制整流与逆变状态当0/2时,Ud00,晶闸管装置处于整流状态,电功率从交流侧输送到直流侧;当/2max时,Ud00,装置处于有源逆变状态,电功率反向传送。为避免逆变颠覆,应设置最大的移相角限制。(2)抑制电流脉动的措施在V-M系统中,脉动电流会产生脉动的转矩,对生产机械不利,同时也增加电机的发热。为了避免或减轻这种影响,须采用抑制电流脉动的措施,主要是:设置平波电抗器;增加整流电路相数;采用多重化技术。图1-2完整的V-M系统机械特性(3)V-M系统机械特性V-M系统机械特性的特点图1-2绘出了完整的V-M系统机械特性,分为电流连续区和电流断续区。由图可见:当电流连续时,特性还比较硬;断续段特性则很软,而且呈显著的非线性,理想空载转速翘得很高。(4)晶闸管触发与整流装置动态结构sTsseKUc(s)Ud0(s)1sTKssUc(s)Ud0(s)(a)准确的(b)近似的图1-3晶闸管触发与整流装置动态结构图ssss返回目录2、直流脉宽调速系统(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。1.不可逆PWM变换器(1)简单的不可逆PWM变换器简单的不可逆PWM变换器-直流电动机系统主电路原理图如图1-4所示,功率开关器件可以是任意一种全控型开关器件,这样的电路又称直流降压斩波器。图1-4简单的不可逆PWM变换器-直流电动机系统VDUs+UgCVTidM+__E(a)电路原理图M•主电路结构21•工作状态与波形在一个开关周期内,当0≤tton时,Ug为正,VT导通,电源电压通过VT加到电动机电枢两端;当ton≤tT时,Ug为负,VT关断,电枢失去电源,经VD续流。U,iUdEidUsttonT0图1-5电压和电流波形O(2)有制动的不可逆PWM变换器电路在简单的不可逆电路中电流不能反向,因而没有制动能力,只能作单象限运行。需要制动时,必须为反向电流提供通路,如图1-6所示的双管交替开关电路。当VT1导通时,流过正向电流+id,VT2导通时,流过–id。应注意,这个电路还是不可逆的,只能工作在第一、二象限,因为平均电压Ud并没有改变极性。图1-6有制动电流通路的不可逆PWM变换器•主电路结构M+-VD2Ug2Ug1VT2VT1VD1E4123CUs+MVT2Ug2VT1Ug1表1-1二象限不可逆PWM变换器的不同工作状态0~tonton~T期间工作状态0~t4t4~tonton~t2t2~T一般电动状态导通器件电流回路电流方向VT11+VD22+制动状态导通器件电流回路电流方向VD14-VT23-轻载电动状态导通器件电流回路电流方向VD14-VT11+VD22+VT23-2.桥式可逆PWM变换器可逆PWM变换器主电路有多种形式,最常用的是桥式(亦称H形)电路,如图1-7所示。这时,电动机M两端电压的极性随开关器件栅极驱动电压极性的变化而改变,其控制方式有双极式、单极式、受限单极式等多种,这里只着重分析最常用的双极式控制的可逆PWM变换器。+UsUg4M+-Ug3VD1VD2VD3VD4Ug1Ug2VT1VT2VT4VT3132AB4MVT1Ug1VT2Ug2VT3Ug3VT4Ug4图1-7桥式可逆PWM变换器H形主电路结构双极式控制方式(1)正向运行:第1阶段,在0≤t≤ton期间,Ug1、Ug4为正,VT1、VT4导通,Ug2、Ug3为负,VT2、VT3截止,电流id沿回路1流通,电动机M两端电压UAB=+Us;第2阶段,在ton≤t≤T期间,Ug1、Ug4为负,VT1、VT4截止,VD2、VD3续流,并钳位使VT2、VT3保持截止,电流id沿回路2流通,电动机M两端电压UAB=–Us;双极式控制方式(续)(2)反向运行:第1阶段,在0≤t≤ton期间,Ug2、Ug3为负,VT2、VT3截止,VD1、VD4续流,并钳位使VT1、VT4截止,电流–id沿回路4流通,电动机M两端电压UAB=+Us;第2阶段,在ton≤t≤T期间,Ug2、Ug3为正,VT2、VT3导通,Ug1、Ug4为负,使VT1、VT4保持截止,电流–id沿回路3流通,电动机M两端电压UAB=–Us;输出波形U,iUdEid+UsttonT0-UsOb)正向电动运行波形U,iUdEid+UsttonT0-UsOc)反向电动运行波形性能评价双极式控制的桥式可逆PWM变换器有下列优点:(1)电流一定连续;(2)可使电机在四象限运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速平稳性好,系统的调速范围可达1:20000左右;(5)低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。性能评价(续)双极式控制方式的不足之处是:在工作过程中,4个开关器件可能都处于开关状态,开关损耗大,而且在切换时可能发生上、下桥臂直通的事故,为了防止直通,在上、下桥臂的驱动脉冲之间,应设置逻辑延时。(1-26)或用转矩表示,(1-27)式中Cm=KmN—电机在额定磁通下的转矩系数;n0=Us/Ce—理想空载转速,与电压系数成正比。de0deesICRnICRCUn(2)直流PWM系统的机械特性方程eme0emeesTCCRnTCCRCUnn–Id,–TeavOn0s0.75n0s0.5n0s0.25n0sId,Teav=1=0.75=0.5=0.25PWM调速系统机械特性图1-8脉宽调速系统的机械特性曲线(电流连续),n0s=Us/Ce(3)PWM控制与变换器的数学模型PWM控制与变换器(简称PWM装置)也可以看成是一个滞后环节,其传递函数可以写成(1-28)sTKsUsUsWse)()()(scds其中Ks—PWM装置的放大系数;Ts—PWM装置的延迟时间,Ts≤T0。///CAC~DC+-Us整流器斩波器CC+(4)电能回馈与泵升电压的限制PWM变换器的直流电源通常由交流电网经不可控的二极管整流器产生,并采用大电容C滤波,以获得恒定的直流电压,电容C同时对感性负载的无功功率起储能缓冲作用。泵升电压产生的原因对于PWM变换器中的滤波电容,其作用除滤波外,还有当电机制动时吸收运行系统动能的作用。由于直流电源靠二极管整流器供电,不可能回馈电能,电机制动时只好对滤波电容充电,这将使电容两端电压升高,称作“泵升电压”。电力电子器件的耐压限制着最高泵升电压,因此电容量就不可能很小,一般几千瓦的调速系统所需的电容量达到数千微法。在大容量或负载有较大惯量的系统中,不可能只靠电容器来限制泵升电压,这时,可以采用下图中的镇流电阻Rb来消耗掉部分动能。分流电路靠开关器件VTb在泵升电压达到允许数值时接通。泵升电压限制泵升电压限制电路+-UsCRbVTb过电压信号UsRbVTbC+PWM系统的优越性主电路线路简单,需用的功率器件少;开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;低速性能好,稳速精度高,调速范围宽;系统频带宽,动态响应快,动态抗扰能力强;功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;直流电源采用不控整流时,电网功率因数比相控整流器高。返回目录3反馈控制闭环直流调速系统转速控制的要求和调速指标开环调速系统及其存在的问题闭环调速系统的组成及其静特性开环系统特性和闭环系统特性的关系反馈控制规律限流保护——电流截止负反馈1).控制要求(1)调速——在一定的最高转速和最低转速范围内,分挡地(有级)或平滑地(无级)调节转速;(2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量;(3)加、减速——频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起,制动尽量平稳。调速指标调速范围:生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,用字母D表示,即(1-31)minmaxnnD其中nmin和nmax一般都指电机额定负载时的转速,对于少数负载很轻的机械,例如精密磨床,也可用实际负载时的转速。静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落nN,与理想空载转速n0之比,称作静差率s,即0Nnns或用百分数表示%1000Nnns(1-32)(1-33)式中nN=n0-nN2)闭环调速系统的组成及其静特性图1-9采用转速负反馈的闭环调速系统+-AGTMTG+-+-+-UtgUdIdn+--+Un∆UnU*nUcUPE+-MTGIdUnUdUcUnntg调节原理在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机TG,从而引出与被调量转速成正比的负反馈电压Un,与给定电压U*n相比较后,得到转速偏差电压Un,经过放大器A,产生电力电子变换器UPE的控制电压Uc,用以控制电动机转速n。转速负反馈直流调速系统中各环节的稳态关系如下:电压比较环节n*nnUUU放大器npcUKU电力电子变换器cs0dUKU调速系统开环机械特性ed0dCRIUn测速反馈环节nUn稳态关系从上述五个关系式中消去中间变量,整理后,即得转速负反馈闭环直流调速系统的静特性方程式(1-35))1()1()/1(ede*nspesped*nspKCRIKCUKKCKKCRIUKKn静特性方程KpKs1/CeU*nUc∆UnEnUd0Un++-IdR-UnKs闭环系统的稳态结构框图图1-10转速负反馈闭环直流调速系统稳态结构图反馈控制规律转速反馈闭环调速系统是一种基本的反馈控制系统,它具有以下三个基本特征,也就是反馈控制的基本规律,各种不另加其他调节器的基本反馈控制系统都服从于这些规律。1.被调量有静差从静特性分析中可以看出,由于采用了比例放大器,闭环系统的开环放大系数K值越大,系统的稳态性能越好。然而,Kp=常数,稳态速差就只能减小,却不可能消除。因为闭环系统的稳态速降为只有K=,才能使ncl=0,而这是不可能的。因此,这样的调速系统叫做有静差调速系统。实际上,这种系统正是依靠被调量的偏差进行控制的。)(edcKICRInl2.抵抗扰动,服从给定反馈控制系统具有良好的抗扰性能,它能有效地抑制一切被负反馈环所包围的前向通道上的扰动作用,但对给定作用的变化则唯命是从。扰动——除给定信号外,作用在控制系统各环节上的一切会引起输出量变化的因素都叫做“扰动作用”。结论:反馈控制系统的规律是:一方面能够有效地抑制一切被包在负反馈环内前向通道上的扰动作用;另一方面,则紧紧地跟随着给定作用,对给定信号的任何变化都是唯命是从的。3)限流保护——电流截止负反

1 / 103
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功