二次函数解析式有哪几种表达式?•一般式:y=ax2+bx+c•顶点式:y=a(x-h)2+k•两根式:y=a(x-x1)(x-x2)一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k解:设所求的二次函数为y=ax2+bx+c由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:因此:所求二次函数是:a=2,b=-3,c=5y=2x2-3x+5已知一个二次函数的图象过点(-1,10)、(1,4)、(2,7)三点,求这个函数的解析式?oxy例1一、一般式1.已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函数的解析式是_______。2.已知一个二次函数的图象经过(-1,8),(1,2),(2,5)三点。求这个函数的解析式解:设所求的二次函数为y=a(x+1)2-3由条件得:已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5)求抛物线的解析式?yox点(0,-5)在抛物线上a-3=-5,得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-5一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例2二、顶点式1.已知抛物线y=ax2+bx+c的顶点是A(-1,4)且经过点(1,2)求其解析式。2、已知抛物线的顶点为(2,3),且过点(1,4),求这个函数的解析式。解:设所求的二次函数为y=a(x+1)(x-1)由条件得:已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?yox点M(0,1)在抛物线上所以:a(0+1)(0-1)=1得:a=-1故所求的抛物线解析式为y=-(x+1)(x-1)即:y=-x2+1一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例3三、交点式1.已知抛物线y=-2x2+8x-9的顶点为A点,若二次函数y=ax2+bx+c的图像经过A点,且与x轴交于B(0,0)、C(3,0)两点,试求这个二次函数的解析式。例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线的解析式为y=ax2+bx+c,解:根据题意可知抛物线经过(0,0),(20,16)和(40,0)三点可得方程组通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式.过程较繁杂,评价例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=a(x-20)2+16解:根据题意可知∵点(0,0)在抛物线上,通过利用条件中的顶点和过愿点选用顶点式求解,方法比较灵活评价∴所求抛物线解析式为例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=ax(x-40)解:根据题意可知∵点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷评价课堂小结求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标*对称轴和最值)通常选择顶点式已知图象与x轴的两个交点的横x1、x2,通常选择两根式yxo确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式,