distinctive-image-features-from-scale-invariant-ke

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

DistinctiveImageFeaturesfromScale-InvariantKeypointsDavidG.LoweComputerScienceDepartmentUniversityofBritishColumbiaVancouver,B.C.,Canadalowe@cs.ubc.caJanuary5,2004AbstractThispaperpresentsamethodforextractingdistinctiveinvariantfeaturesfromimagesthatcanbeusedtoperformreliablematchingbetweendifferentviewsofanobjectorscene.Thefeaturesareinvarianttoimagescaleandrotation,andareshowntoproviderobustmatchingacrossaasubstantialrangeofaffinedis-tortion,changein3Dviewpoint,additionofnoise,andchangeinillumination.Thefeaturesarehighlydistinctive,inthesensethatasinglefeaturecanbecor-rectlymatchedwithhighprobabilityagainstalargedatabaseoffeaturesfrommanyimages.Thispaperalsodescribesanapproachtousingthesefeaturesforobjectrecognition.Therecognitionproceedsbymatchingindividualfea-turestoadatabaseoffeaturesfromknownobjectsusingafastnearest-neighboralgorithm,followedbyaHoughtransformtoidentifyclustersbelongingtoasin-gleobject,andfinallyperformingverificationthroughleast-squaressolutionforconsistentposeparameters.Thisapproachtorecognitioncanrobustlyidentifyobjectsamongclutterandocclusionwhileachievingnearreal-timeperformance.AcceptedforpublicationintheInternationalJournalofComputerVision,2004.11IntroductionImagematchingisafundamentalaspectofmanyproblemsincomputervision,includingobjectorscenerecognition,solvingfor3Dstructurefrommultipleimages,stereocorrespon-dence,andmotiontracking.Thispaperdescribesimagefeaturesthathavemanypropertiesthatmakethemsuitableformatchingdifferingimagesofanobjectorscene.Thefeaturesareinvarianttoimagescalingandrotation,andpartiallyinvarianttochangeinilluminationand3Dcameraviewpoint.Theyarewelllocalizedinboththespatialandfrequencydomains,re-ducingtheprobabilityofdisruptionbyocclusion,clutter,ornoise.Largenumbersoffeaturescanbeextractedfromtypicalimageswithefficientalgorithms.Inaddition,thefeaturesarehighlydistinctive,whichallowsasinglefeaturetobecorrectlymatchedwithhighprobabilityagainstalargedatabaseoffeatures,providingabasisforobjectandscenerecognition.Thecostofextractingthesefeaturesisminimizedbytakingacascadefilteringapproach,inwhichthemoreexpensiveoperationsareappliedonlyatlocationsthatpassaninitialtest.Followingarethemajorstagesofcomputationusedtogeneratethesetofimagefeatures:1.Scale-spaceextremadetection:Thefirststageofcomputationsearchesoverallscalesandimagelocations.Itisimplementedefficientlybyusingadifference-of-Gaussianfunctiontoidentifypotentialinterestpointsthatareinvarianttoscaleandorientation.2.Keypointlocalization:Ateachcandidatelocation,adetailedmodelisfittodeterminelocationandscale.Keypointsareselectedbasedonmeasuresoftheirstability.3.Orientationassignment:Oneormoreorientationsareassignedtoeachkeypointlo-cationbasedonlocalimagegradientdirections.Allfutureoperationsareperformedonimagedatathathasbeentransformedrelativetotheassignedorientation,scale,andlocationforeachfeature,therebyprovidinginvariancetothesetransformations.4.Keypointdescriptor:Thelocalimagegradientsaremeasuredattheselectedscaleintheregionaroundeachkeypoint.Thesearetransformedintoarepresentationthatallowsforsignificantlevelsoflocalshapedistortionandchangeinillumination.ThisapproachhasbeennamedtheScaleInvariantFeatureTransform(SIFT),asittransformsimagedataintoscale-invariantcoordinatesrelativetolocalfeatures.Animportantaspectofthisapproachisthatitgenerateslargenumbersoffeaturesthatdenselycovertheimageoverthefullrangeofscalesandlocations.Atypicalimageofsize500x500pixelswillgiverisetoabout2000stablefeatures(althoughthisnumberdependsonbothimagecontentandchoicesforvariousparameters).Thequantityoffeaturesispartic-ularlyimportantforobjectrecognition,wheretheabilitytodetectsmallobjectsinclutteredbackgroundsrequiresthatatleast3featuresbecorrectlymatchedfromeachobjectforreli-ableidentification.Forimagematchingandrecognition,SIFTfeaturesarefirstextractedfromasetofref-erenceimagesandstoredinadatabase.Anewimageismatchedbyindividuallycomparingeachfeaturefromthenewimagetothispreviousdatabaseandfindingcandidatematch-ingfeaturesbasedonEuclideandistanceoftheirfeaturevectors.Thispaperwilldiscussfastnearest-neighboralgorithmsthatcanperformthiscomputationrapidlyagainstlargedatabases.Thekeypointdescriptorsarehighlydistinctive,whichallowsasinglefeaturetofinditscorrectmatchwithgoodprobabilityinalargedatabaseoffeatures.However,inacluttered2image,manyfeaturesfromthebackgroundwillnothaveanycorrectmatchinthedatabase,givingrisetomanyfalsematchesinadditiontothecorrectones.Thecorrectmatchescanbefilteredfromthefullsetofmatchesbyidentifyingsubsetsofkeypointsthatagreeontheobjectanditslocation,scale,andorientationinthenewimage.Theprobabilitythatseveralfeatureswillagreeontheseparametersbychanceismuchlowerthantheprobabilitythatanyindividualfeaturematchwillbeinerror.ThedeterminationoftheseconsistentclusterscanbeperformedrapidlybyusinganefficienthashtableimplementationofthegeneralizedHoughtransform.Eachclusterof3ormorefeaturesthatagreeonanobjectanditsposeisthensubjecttofurtherdetailedverification.First,aleast-squaredestimateismadeforanaffineapproxi-mationtotheobjectpose.Anyothe

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功