1黄冈中学高考数学9解析几何题库黄冈中学高考数学知识点敬请去百度文库搜索---“黄冈中学高考数学知识点”---结合起来看看效果更好记忆中理解理解中记忆没有学不好滴数学涵盖所有知识点题题皆精心解答一、选择题1.(辽宁理,4)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为A.22(1)(1)2xyB.22(1)(1)2xyC.22(1)(1)2xyD.22(1)(1)2xy【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径2即可.【答案】B2.(重庆理,1)直线1yx与圆221xy的位置关系为()2A.相切B.相交但直线不过圆心C.直线过圆心D.相离【解析】圆心(0,0)为到直线1yx,即10xy的距离1222d,而2012,选B。【答案】B3.(重庆文,1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.22(2)1xyB.22(2)1xyC.22(1)(3)1xyD.22(3)1xy解法1(直接法):设圆心坐标为(0,)b,则由题意知2(1)(2)1ob,解得2b,故圆的方程为22(2)1xy。解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1xy解法3(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C。【答案】A4.(上海文,17)点P(4,-2)与圆224xy上任一点连续的中点轨迹方程是()A.22(2)(1)1xyB.22(2)(1)4xyC.22(4)(2)4xyD.22(2)(1)1xy【解析】设圆上任一点为Q(s,t),PQ的中点为A(x,y),则2224tysx,解得:2242ytxs,代入圆方程,得(2x-4)2+(2y+2)2=4,整理,得:22(2)(1)1xy【答案】A5.(上海文,15)已知直线12:(3)(4)10,:2(3)230,lkxkylkxy与平行,则k得值是()A.1或3B.1或5C.3或5D.1或23【解析】当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:kk43=k-3,解得:k=5,故选C。【答案】C6.(上海文,18)过圆22(1)(1)1Cxy:的圆心,作直线分别交x、y正半轴于点A、B,AOB被圆分成四部分(如图),若这四部分图形面积满足|||,SSSS¥则直线AB有()(A)0条(B)1条(C)2条(D)3条【解析】由已知,得:,IVIIIIIISSSS,第II,IV部分的面积是定值,所以,IVIISS为定值,即,IIIISS为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条,故选B。【答案】B7.(陕西理,4)过原点且倾斜角为60的直线被圆学2240xyy所截得的弦长为科网A.3B.2C.6D.2322224024323xyyxy解析:(),A(0,2),OA=2,A到直线ON的距离是1,ON=弦长【答案】D二、填空题8.(广东文,13)以点(2,1)为圆心且与直线6xy相切的圆的方程是.【解析】将直线6xy化为60xy,圆的半径|216|5112r,所以圆的方程为2225(2)(1)2xy【答案】2225(2)(1)2xy9.(天津理,13)设直线1l的参数方程为113xtyt(t为参数),直线2l的方程为y=3x+4则1l与2l的距离为_______4【解析】由题直线1l的普通方程为023yx,故它与与2l的距离为510310|24|。【答案】510310.(天津文,14)若圆422yx与圆)0(06222aayyx的公共弦长为32,则a=________.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为ay1,利用圆心(0,0)到直线的距离d1|1|a为13222,解得a=1.【答案】111.(全国Ⅰ文16)若直线m被两平行线12:10:30lxylxy与所截得的线段的长为22,则m的倾斜角可以是①15②30③45④60⑤75其中正确答案的序号是.(写出所有正确答案的序号)【解析】解:两平行线间的距离为211|13|d,由图知直线m与1l的夹角为o30,1l的倾斜角为o45,所以直线m的倾斜角等于00754530o或00153045o。【答案】①⑤12.(全国Ⅱ理16)已知ACBD、为圆O:224xy的两条相互垂直的弦,垂足为1,2M,则四边形ABCD的面积的最大值为。【解析】设圆心O到ACBD、的距离分别为12dd、,则222123ddOM+.四边形ABCD的面积222212121||||2(4)8()52SABCDdddd)(4-【答案】513.(全国Ⅱ文15)已知圆O:522yx和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于【解析】由题意可直接求出切线方程为y-2=21(x-1),即x+2y-5=0,从而求出在两坐标轴上5的截距分别是5和25,所以所求面积为42552521。【答案】25414.(湖北文14)过原点O作圆x2+y2--6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为。【解析】可得圆方程是22(3)(4)5xy又由圆的切线性质及在三角形中运用正弦定理得4PQ.【答案】415.(江西理16).设直线系:cos(2)sin1(02)Mxy,对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数(3)nn,存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).【解析】因为cos(2)sin1xy所以点(0,2)P到M中每条直线的距离2211cossind即M为圆C:22(2)1xy的全体切线组成的集合,从而M中存在两条平行直线,所以A错误;又因为(0,2)点不存在任何直线上,所以B正确;对任意3n,存在正n边形使其内切圆为圆C,故C正确;M中边能组成两个大小不同的正三角形ABC和AEF,故D错误,故命题中正确的序号是B,C.【答案】,BC三、解答题16.(2009江苏卷18)(本小题满分16分)在平面直角坐标系xoy中,已知圆221:(3)(1)4Cxy和圆222:(4)(5)4Cxy.(1)若直线l过点(4,0)A,且被圆1C截得的弦长为23,求直线l的方程;6(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线1l和2l,它们分别与圆1C和圆2C相交,且直线1l被圆1C截得的弦长与直线2l被圆2C截得的弦长相等,试求所有满足条件的点P的坐标。解(1)设直线l的方程为:(4)ykx,即40kxyk由垂径定理,得:圆心1C到直线l的距离22234()12d,结合点到直线距离公式,得:2|314|1,1kkk化简得:272470,0,,24kkkork求直线l的方程为:0y或7(4)24yx,即0y或724280xy(2)设点P坐标为(,)mn,直线1l、2l的方程分别为:1(),()ynkxmynxmk,即:110,0kxynkmxynmkk因为直线1l被圆1C截得的弦长与直线2l被圆2C截得的弦长相等,两圆半径相等。由垂径定理,得::圆心1C到直线1l与2C直线2l的距离相等。故有:2241|5||31|111nmknkmkkkk,化简得:(2)3,(8)5mnkmnmnkmn或关于k的方程有无穷多解,有:20,30mnmnm-n+8=0或m+n-5=0解之得:点P坐标为313(,)22或51(,)22。2005—2008年高考题一、选择题1.(2008年全国Ⅱ理11)等腰三角形两腰所在直线的方程分别为20xy与x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为().A.3B.2C.13D.12答案A7解析1,02:11kyxl,71,047:22kyxl,设底边为kxyl:3由题意,3l到1l所成的角等于2l到3l所成的角于是有371711112211kkkkkkkkkkk再将A、B、C、D代入验证得正确答案是A。2.(2008年全国Ⅱ文3)原点到直线052yx的距离为()A.1B.3C.2D.5答案D解析52152d。3.(2008四川4)将直线3yx绕原点逆时针旋转090,再向右平移1个单位长度,所得到的直线为()A.1133yxB.113yxC.33yxD.113yx答案A4.(2008上海15)如图,在平面直角坐标系中,是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成的区域(含边界),A、B、C、D是该圆的四等分点.若点()Pxy,、点()Pxy,满足xx≤且yy≥,则称P优于P.如果中的点Q满足:不存在中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧()A.B.C.D.答案D5.(2007重庆文)若直线与圆122yx相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为()A.-3或3B.3C.-2或2D.2答案A6.(2007天津文)“2a”是“直线20axy平行于直线1xy”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C87.(2006年江苏)圆1)3()1(22yx的切线方程中有一个是()A.x-y=0B.x+y=0C.x=0D.y=0答案C8.(2005湖南文)设直线的方程是0ByAx,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是()A.20B.19C.18D.16答案C9.(2005全国Ⅰ文)设直线l过点)0,2(,且与圆122yx相切,则l的斜率是工()A.1B.21C.33D.3答案C10.(2005辽宁)若直线02cyx按向量)1,1(a平移后与圆522yx相切,则c的值为()A.8或-2B.6或-4C.4或-6D.2或-8答案A11.(2005北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案B二、填空题12.(2008天津文15,)已知圆C的圆心与点(2,1)P关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于BA,两点,且6AB,则圆C的方程为_______.答案22(1)18xy13.(2008四川文14)已知直线:40lxy与圆22:112Cxy,则C上各点到l的距离的最小值为_______.答案214.(2008广东理11)经过圆2220xxy的圆心C,且与直线0xy垂直的直线9ABlC程是.答案10xy15.(2007上海文)如图,AB,是直线l上的两点,且2AB.两个半径相等的动圆分别与l相切于AB,点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是.答案22,016.(2007湖南理)圆心为(11),且与直线