圆锥曲线综合训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-圆锥曲线综合训练第Ⅰ卷客观题一、单选题1.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.2.以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A,B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过定圆C上一点A作圆的动弦AB,O为原点,若则动点P的轨迹为椭圆.其中正确的个数是()A.1个B.2个C.3个D.4个3.(2012•山东)已知椭圆C:+=1(a>b>0)的离心率为,与双曲线x2﹣y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=14.(2015浙江)如图,斜线段AB与平面所成的角为60,B为斜足,平面上的动点P满足PAB=30,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支5.椭圆的左、右焦点分别为,弦AB过,若的内切圆周长为,A,B两点的坐标分别为和,则的值为()A.B.C.D.-2-6.如图,、是双曲线的左、右焦点,过的直线与双曲线的左、右两个分支分别交于点、,若为等边三角形,则该双曲线的离心率为()A.B.C.D.第Ⅱ卷主观题二、填空题7.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是________.8.(2017•新课标Ⅰ卷)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.9.(2015·山东)平面直角坐标系中,双曲线C1:的渐近线与抛物线交于点,若的垂心为的焦点,则的离心率为________.10.已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若+=18,则k=________.三、解答题11.在直角坐标系xOy中,设圆的方程为(x+2)2+y2=48,F1是圆心,F2(2,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.(i)是否存在定点M,使得+为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.12.(2017•山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.-3-(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.13.(2017•浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.四、综合题14.如图,曲线C由上半椭圆和部分抛物线连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得PQ为直径的圆恰好过点A,若存在直线l的方程;若不存在,请说明理由.-4-15.已知椭圆E:的离心率为,F1,F2分别是它的左、右焦点,且存在直线l,使F1,F2关于l的对称点恰好为圆C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一条直径的两个端点.(1)求椭圆E的方程;(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.16.(2013•辽宁)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(1)求P的值;(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).-5-答案解析部分一、单选题1.【答案】A【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.2.【答案】B【考点】曲线与方程【解析】【解答】解:①双曲线的焦点坐标为(±5,0),椭圆的焦点坐标为(±5,0),所以双曲线与椭圆有相同的焦点,正确;②不妨设抛物线为标准抛物线:y2=2px(p>0),即抛物线位于Y轴的右侧,以X轴为对称轴.设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.又M到准线的距离d是梯形的中位线,故有d=,由抛物线的定义可得:==半径.所以圆心M到准线的距离等于半径,所以圆与准线是相切,正确.③平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,所以不正确;④设定圆C的方程为x2+y2+Dx+Ey+F=0,点A(m,n),P(x,y),由则可知P为AB的中点,则B(2x﹣m,2y﹣n),因为AB为圆的动弦,所以B在已知圆上,把B的坐标代入圆x2+y2+Dx+Ey+F=0得到P的轨迹仍为圆,当B与A重合时AB不是弦,所以点A除外,所以不正确.故选B.【分析】对4个选项分别进行判断,即可得出结论.3.【答案】D【考点】椭圆的标准方程,双曲线的简单性质,圆锥曲线的共同特征【解析】【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为y=±x∵以这四个交点为顶点的四边形的面积为16,故边长为4,∴(2,2)在椭圆C:+=1(a>b>0)上∴-6-又∵∴∴a2=4b2∴a2=20,b2=5∴椭圆方程为:+=1故选D.【分析】由题意,双曲线x2﹣y2=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆C:+=1.利用,即可求得椭圆方程.4.【答案】C【考点】圆锥曲线的共同特征,向量语言表述线面的垂直、平行关系【解析】【解答】由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆,故选C。【分析】本题主要考察圆锥曲线的定义以及空间线面的位置关系,解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60角的平面截得的图形是椭圆的结论。本题属于中等题,重点考察学生的空间想象能力以及对圆锥曲线的定义得理解。5.【答案】D【考点】椭圆的简单性质,直线与圆锥曲线的综合问题【解析】【解答】由椭圆的标准方程可得:,因为的内切圆周长为,所以的内切圆的半径为,则根据三角形内切圆半径和周长与三角形的面积的关系有,所以的面积为,而的面积又等于和之和,即,所以,则,故选D.【分析】求出椭圆的焦点坐标,结合椭圆的定义,通过三角形的面积转化求解即可.6.【答案】D【考点】余弦定理,双曲线的定义,双曲线的简单性质【解析】【解答】点是双曲线上的点,所以,是等边三角形,所以,,,,,所以根据余弦定理得:,将数据代入得:,整理得:即,,所以渐近线的斜率,故选D.-7-【分析】由双曲线的定义,可得F1A-F2A=F1A-AB=F1B=2a,BF2-BF1=2a,BF2=4a,F1F2=2c,再在△F1BF2中应用余弦定理得,a,c的关系,由离心率公式,计算即可得到所求.二、填空题7.【答案】[-5,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.8.【答案】【考点】双曲线的简单性质【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.-8-故答案为:.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.9.【答案】【考点】抛物线的标准方程,双曲线的标准方程【解析】【解答】设所在的直线方程为,则所在直线方程为,解方程组,得,所以点的坐标为,抛物线的焦点的坐标为:.应为是的垂心,所以,所以,所以,【分析】本题考查了双曲线与抛物线的标准方程与几何性质,意在考查学生对圆锥曲线基本问题的把握以及分析问题解决问题的能力以及基本的运算求解能力,三角形的垂心的概念以及两直线垂直的条件是突破此题的关键.10.【答案】【考点】抛物线的定义,抛物线的标准方程,抛物线的简单性质【解析】【解答】解:由题意,图形关于x轴对称,A,B,P三点共线,可得=.由焦半径公式|AF|=x1+1=|NF|,||BF|=x2+1=|MF|,∴+=+=18,∴(y1+y2)2=20y1y2,由,可得ky2﹣4y+4k=0,∴y1+y2=,y1y2=4,∴=80,∵k>0,∴k=.故答案为.【分析】由题意,图形关于x轴对称,A,B,P三点共线,可得=.由焦半径公式|AF|=x1+1=|NF|,||BF|=x2+1=|MF|,+=+=18,(y1+y2)2=20y1y2,再利用韦达定理,即可得出结论.-9-三、解答题11.【答案】解:(Ⅰ)∵圆的方程为(x+2)2+y2=48的圆心F1为(﹣2,0),半径为4.依题意点P满足,且4>丨F1F2丨,故点P的轨迹为以F1、F2为焦点,长轴为4的椭圆∴曲线C的方程:.(Ⅱ)(i)设M(t,0),设直线l的方程:x=my+t,A(x1,y1),B(x2,y2),联立,整理得:(m2+3)y2+2mty+t2﹣12=0,y1+y2=﹣,y1y2=,=,=,则+==,当2t2+24=72﹣6t2,即t2=6时,+=1,此时M的坐标为(±,0),综上,存在点M(±,0),使得+=1,(ii)由(i)可知:t2=6,则丨AB丨=丨y1﹣y2丨=,原点O直线AB的距离d=,S△ABQ=4××=,令=μ∈[,+∞),则S△ABQ==≤=4,当且仅当t=,即m=0取最大值,∴△ABQ面积的最大值4-10-【考点】椭圆的应用【解

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功