半导体与常用器件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电工电子技术第6章电子技术中常用半导体器件第7章基本放大电路第8章集成运算放大器第9章组合逻辑电路第10章触发器和时序逻辑电路第11章存储器第12章数/模和模/数转换器电工电子技术主编曾令琴电工电子技术学习目的与要求了解本征半导体、P型和N型半导体的特征;了解PN结的形成过程;熟悉二极管的伏安特性及其种类、用途;深刻理解晶体管的电流放大原理,掌握晶体管的输入和输出特性,初步掌握工程技术人员必需具备的分析电子电路的基本理论、基本知识和基本技能。电工电子技术6.1半导体的基本知识物质按导电能力的不同可分为导体、半导体和绝缘体三大类。金属导体的电导率一般在105s/cm量级;塑料、云母等绝缘体的电导率通常是10-22~10-14s/cm量级;半导体的电导率则在10-9~102s/cm量级。半导体的导电能力虽然介于导体和绝缘体之间,但半导体的应用却极其广泛,这是由半导体的独特性能决定的:1.半导体的独特性能光敏性——半导体受光照后,其导电能力大大增强;热敏性——受温度的影响,半导体导电能力变化很大;掺杂性——在半导体中掺入少量特殊杂质,其导电能力极大地增强;半导体材料的独特性能是由其内部的导电机理所决定的。电工电子技术2.本征半导体和杂质半导体(1)本征半导体最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价元素,即每个原子最外层电子数为4个。++Si(硅原子)Ge(锗原子)硅原子和锗原子的简化模型图Si+4Ge+4因为原子呈电中性,所以简化模型图中的原子核只用带圈的+4符号表示即可。电工电子技术天然的硅和锗是不能制作成半导体器件的。它们必须先经过高度提纯,形成晶格结构完全对称的本征半导体。本征半导体原子核最外层的价电子都是4个,称为四价元素,它们排列成非常整齐的晶格结构。在本征半导体的晶格结构中,每一个原子均与相邻的四个原子结合,即与相邻四个原子的价电子两两组成电子对,构成共价键结构。+4+4+4+4+4+4+4+4+4实际上半导体的晶格结构是三维的。晶格结构共价键结构电工电子技术+4+4+4+4+4+4+4+4+4从共价键晶格结构来看,每个原子外层都具有8个价电子。但价电子是相邻原子共用,所以稳定性并不能象绝缘体那样好。在游离走的价电子原位上留下一个不能移动的空位,叫空穴。受光照或温度上升影响,共价键中价电子的热运动加剧,一些价电子会挣脱原子核的束缚游离到空间成为自由电子。由于热激发而在晶体中出现电子空穴对的现象称为本征激发。本征激发的结果,造成了半导体内部自由电子载流子运动的产生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带正电荷的离子。由于共价键是定域的,这些带正电的离子不会移动,即不能参与导电,成为晶体中固定不动的带正电离子。++电工电子技术+4+4+4+4+4+4+4+4+4受光照或温度上升影响,共价键中其它一些价电子直接跳进空穴,使失电子的原子重新恢复电中性。价电子填补空穴的现象称为复合。此时整个晶体带电吗?为什么?参与复合的价电子又会留下一个新的空位,而这个新的空穴仍会被邻近共价键中跳出来的价电子填补上,这种价电子填补空穴的复合运动使本征半导体中又形成一种不同于本征激发下的电荷迁移,为区别于本征激发下自由电子载流子的运动,我们把价电子填补空穴的复合运动称为空穴载流子运动。电工电子技术半导体的导电机理与金属导体导电机理有本质上的区别:金属导体中只有自由电子一种载流子参与导电;而半导体中则是本征激发下的自由电子和复合运动形成的空穴两种载流子同时参与导电。两种载流子电量相等、符号相反,即自由电子载流子和空穴载流子的运动方向相反。+4+4+4+4+4+4+4+4+4自由电子载流子运动可以形容为没有座位人的移动;空穴载流子运动则可形容为有座位的人依次向前挪动座位的运动。半导体内部的这两种运动总是共存的,且在一定温度下达到动态平衡。半导体的导电机理电工电子技术(2)杂质半导体本征半导体虽然有自由电子和空穴两种载流子,但由于数量极少导电能力仍然很低。如果在其中掺入某种元素的微量杂质,将使掺杂后的杂质半导体的导电性能大大增强。+五价元素磷(P)+4+4+4+4+4+4+4+4+4P掺入磷杂质的硅半导体晶格中,自由电子的数量大大增加。因此自由电子是这种半导体的导电主流。在室温情况下,本征硅中的磷杂质等于10-6数量级时,电子载流子的数目将增加几十万倍。掺入五价元素的杂质半导体由于自由电子多而称为电子型半导体,也叫做N型半导体。电工电子技术+4+4+4+4+4+4+4+4+4三价元素硼(B)B+掺入硼杂质的硅半导体晶格中,空穴载流子的数量大大增加。因此空穴是这种半导体的导电主流。一般情况下,杂质半导体中的多数载流子的数量可达到少数载流子数量的1010倍或更多,因此,杂质半导体比本征半导体的导电能力可增强几十万倍。掺入三价元素的杂质半导体,由于空穴载流子的数量大大于自由电子载流子的数量而称为空穴型半导体,也叫做P型半导体。在P型半导体中,多数载流子是空穴,少数载流子是自由电子,而不能移动的离子带负电。-电工电子技术不论是N型半导体还是P型半导体,其中的多子和少子的移动都能形成电流。但是,由于多子的数量远大于少子的数量,因此起主要导电作用的是多数载流子。注意:掺入杂质后虽然形成了N型或P型半导体,但整个半导体晶体仍然呈电中性。一般可近似认为多数载流子的数量与杂质的浓度相等。P型半导体中的空穴多于自由电子,是否意味着带正电?自由电子导电和空穴导电的区别在哪里?空穴载流子的形成是否由自由电子填补空穴的运动形成的?何谓杂质半导体中的多子和少子?N型半导体中的多子是什么?少子是什么?电工电子技术3.PN结及其形成过程PN结的形成杂质半导体的导电能力虽然比本征半导体极大增强,但它们并不能称为半导体器件。在电子技术中,PN结是一切半导体器件的“元概念”和技术起始点。在一块晶片的两端分别注入三价元素硼和五价元素磷++++++++++++++++----------------P区N区空间电荷区内电场电工电子技术动画演示电工电子技术PN结形成的过程中,多数载流子的扩散和少数载流子的漂移共存。开始时多子的扩散运动占优势,扩散运动的结果使PN结加宽,内电场增强;另一方面,内电场又促使了少子的漂移运动:P区的少子电子向N区漂移,补充了交界面上N区失去的电子,同时,N区的少子空穴向P区漂移,补充了原交界面上P区失去的空穴,显然漂移运动减少了空间电荷区带电离子的数量,削弱了内电场,使PN结变窄。最后,扩散运动和漂移运动达到动态平衡,空间电荷区的宽度基本稳定,即PN结形成。PN结内部载流子基本为零,因此导电率很低,相当于介质。但PN结两侧的P区和N区导电率很高,相当于导体,这一点和电容比较相似,所以说PN结具有电容效应。电工电子技术4.PN结的单向导电性电工电子技术PN结反向偏置时的情况电工电子技术PN结的单向导电性PN结的上述“正向导通,反向阻断”作用,说明它具有单向导电性,PN结的单向导电性是它构成半导体器件的基础。由于常温下少数载流子的数量不多,故反向电流很小,而且当外加电压在一定范围内变化时,反向电流几乎不随外加电压的变化而变化,因此反向电流又称为反向饱和电流。反向饱和电流由于很小一般可以忽略,从这一点来看,PN结对反向电流呈高阻状态,也就是所谓的反向阻断作用。值得注意的是,由于本征激发随温度的升高而加剧,导致电子—空穴对增多,因而反向电流将随温度的升高而成倍增长。反向电流是造成电路噪声的主要原因之一,因此,在设计电路时,必须考虑温度补偿问题。PN结中反向电流的讨论电工电子技术2.半导体受温度和光照影响,产生本征激发现象而出现电子、空穴对;同时,其它价电子又不断地“转移跳进”本征激发出现的空穴中,产生价电子与空穴的复合。在一定温度下,电子、空穴对的激发和复合最终达到动态平衡状态。平衡状态下,半导体中的载流子浓度一定,即反向电流的数值基本不发生变化。1.半导体中少子的浓度虽然很低,但少子对温度非常敏感,因此温度对半导体器件的性能影响很大。而多子因浓度基本上等于杂质原子的掺杂浓度,所以说多子的数量基本上不受温度的影响。4.PN结的单向导电性是指:PN结的正向电阻很小,因此正向偏置时多子构成的扩散电流极易通过PN结;同时PN结的反向电阻很大,因此反向偏置时基本上可以认为电流无法通过PN结。3.空间电荷区的电阻率很高,是指其内电场阻碍多数载流子扩散运动的作用,由于这种阻碍作用,使得扩散电流难以通过空间电荷区,即空间电荷区对扩散电流呈现高阻作用。学习与归纳电工电子技术5.PN结的反向击穿问题PN结反向偏置时,在一定的电压范围内,流过PN结的电流很小,基本上可视为零值。但当电压超过某一数值时,反向电流会急剧增加,这种现象称为PN结反向击穿。反向击穿发生在空间电荷区。击穿的原因主要有两种:当PN结上加的反向电压大大超过反向击穿电压时,处在强电场中的载流子获得足够大的能量碰撞晶格,将价电子碰撞出来,产生电子空穴对,新产生的载流子又会在电场中获得足够能量,再去碰撞其它价电子产生新的电子空穴对,如此连锁反应,使反向电流越来越大,这种击穿称为雪崩击穿。产生雪崩击穿的电场比较大,外加反向电压相对较高。通常出现雪崩击穿的电压大约在7V以上。(1)雪崩击穿电工电子技术当PN结两边的掺杂浓度很高,阻挡层又很薄时,阻挡层内载流子与中性原子碰撞的机会大为减少,因而不会发生雪崩击穿。(2)齐纳击穿当PN结非常薄时,即使在阻挡层两端加的反向电压不太大,也会产生一个比较强的内电场。这个内电场足以把PN结内中性原子的价电子从共价键中拉出来,产生出大量的电子—空穴对,使PN结反向电流剧增,这种反向击穿现象称为齐纳击穿齐纳击穿。可见,齐纳击穿发生在高掺杂的PN结中,相应的击穿电压较低,一般小于5V。雪崩击穿是一种碰撞的击穿,齐纳击穿是一种场效应击穿,二者均属于电击穿。电击穿过程通常可逆,即PN结两端的反向电压降低后,PN结仍可恢复到原来状态。利用电击穿时PN结两端电压变化很小电流变化很大的特点,人们制造出工作在反向击穿区的稳压管。电工电子技术当PN结两端加的反向电压过高时,反向电流会继续急剧增长,PN结上热量不断积累,引起结温升高,载流子增多,反向电流一直增大下去,结温一再持续升高循环,超过其容许值时,PN结就会发生热击穿而永久损坏。热击穿的过程是不可逆的,所以应尽量避免发生。(3)热击穿能否说出PN结有何特性?半导体的导电机理与金属导体有何不同?什么是本征激发?什么是复合?少数载流子和多数载流子是如何产生的?试述雪崩击穿和齐纳击穿的特点。这两种击穿能否造成PN结的永久损坏?空间电荷区的电阻率为什么很高?电工电子技术6.2半导体二极管把PN结用管壳封装,然后在P区和N区分别向外引出一个电极,即可构成一个二极管。二极管是电子技术中最基本的半导体器件之一。根据其用途分有检波管、开关管、稳压管和整流管等。硅高频检波管开关管稳压管整流管发光二极管电子工程实际中,二极管应用得非常广泛,上图所示即为各类二极管的部分产品实物图。电工电子技术1.二极管的基本结构和类型点接触型:结面积小,适用于高频检波、脉冲电路及计算机中的开关元件。外壳触丝N型锗片正极引线负极引线N型锗面接触型:结面积大,适用于低频整流器件。负极引线底座金锑合金PN结铝合金小球正极引线普通二极管图符号稳压二极管图符号发光二极管图符号DDZD使用二极管时,必须注意极性不能接反,否则电路非但不能正常工作,还有毁坏管子和其他元件的可能。电工电子技术2.二极管的伏安特性U(V)0.500.8-50-25I(mA)204060(A)4020二极管的伏安特性是指流过二极管的电流与两端所加电压的函数关系。二极管既然是一个PN结,其伏安特性当然具有“单向导电性”。二极管的伏安特性呈非线性,特性曲线上大致可分为四个区:外加正向电压超过死区电压(硅管0.5V,锗管0.1V)时,内电场大大削弱,正向电流迅速增长,二极管进入正向导通区。死区正向导通区反向截止区当外加正向电压很低时,由于外电场还不能克服PN结内电场对多数载流子扩散运动的阻力,故

1 / 72
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功