1三角函数公式大全倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)平常针对不同条件的常用的两个公式tanα*cotα=1一个特殊公式(sina+sinθ)(sina-sinθ)=sin(a+θ)sin(a-θ)证明:(sina+sinθ)(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)sin(a-θ)坡度公式:我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h/l,坡度的一般形式写成l:m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tana.锐角三角函数公式:正弦:sinα=∠α的对边/∠α的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边半角公式:sin2(α/2)=(1-cosα)/2cos2(α/2)=(1+cosα)/2tan2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα)=0倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式推导过程中可得到一组降次公式,即2万能公式:sinα=2tan(α/2)/[1+tan2(α/2)]cosα=[1-tan2(α/2)]/[1+tan2(α/2)]tanα=2tan(α/2)/[1-tan2(α/2)]其他sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B和差化积:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)积化和差:sinαsinβ=-[cos(α+β)-cos(α-β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/23公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα4sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)A·sin(ωt+θ)+B·sin(ωt+φ)=√{(A²+B²+2ABcos(θ-φ)}·sin{ωt+arcsin[(A·sinθ+B·sinφ)/√{A2+B2;+2ABcos(θ-φ)}}√表示根号,包括{……}中的内容三角函数的诱导公式(六公式)(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2;+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC其他非重点三角函数:(1)tanA=sinA/cosA(2)csc(a)=1/sin(a)(3)sec(a)=1/cos(a)(4)sec2a+csc2α=sec2α.csc2α二倍角公式:sin2A=2sinA·cosAcos2A=cos2A-sin2A=2cos2A-1=1-2sin2Atan2A=(2tanA)/(1-tan2A)三倍角公式:sin3α=3sinα-4sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cos3α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tan(α)(-3+tan2α)/(-1+3tan2α)=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosa5sin3a=3sina-4sin3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)四倍角公式:sin4A=-4(cosA.sinA(2sin2A-1))cos4A=1+(-8cos2A+8cos4A)tan4A=(4tanA-4tan3A)/(1-6tan2A+tan4A)五倍角公式:sin5A=16sin5A-20sin3A+5sinAcos5A=16cos5A-20cos3A+5cosAtan5A=tanA(5-10tan2A+tan4A)/(1-10tan2A+5tan4A)六倍角公式:sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sin2A)cos6A=(-1+2cos2A)16cos4A-16cos2A+1)tan6A=(-6tanA+20tan3A-6tan5A)/(-1+15tan2A-15tan4A+tan6A)七倍角公式:sin7A=-sinA(56sin2A-112sin4A-7+64sin6A)cos7A=cosA(56cos2A-112cos4A+64cos6A-7)tan7A=tanA(-7+35tan2A-21tan4A+tan6A)/(-1+21tan2A-35tan4A+7tan6A)八倍角公式:sin8A=-8(cosAsinA(2sin2A-1)(-8sin2A+8sin4A+1)cos8A=1+(160cos4A-256cos6A+128cos8A-32cos2A)tan8A=-8tanA(-1+7tan2A-7tan4A+tan6A)/(1-28tan2A+70tan4A-28tan6A+tan8A)九倍角公式:sin9A=sinA(-3+4sin2A)(64sin6A-96sin4A+36sin2A-3);cos9A=(cosA(-3+4cos2A)(64cos6A-96cos4A+36cos2A-3);tan9A=tanA(9-84tan2A+126tan4A-36tan6A+tan8A)/(1-36tan2A+126tan4A-84tan6A+9tan8A)十倍角公式:sin10A=2(cosAsinA(4sin2A+2sinA-1)(4sin2A-2sinA-1)(-20sin2A+5+16sin4A)cos10A=(-1+2cos2A)(256cos8A-512cos6A+304cos4A-48cos2A+1)tan10A=-2tanA(5-60tan2A+126tan4A-60tan6A+5tan8A)/(-1+45tan2A-210tan4A+210tan6A-45tan8A+tan10A)N倍角公式:根据棣美弗定理,(cosθ+isinθ)n=cos(nθ)+isin(nθ)为方便描6述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)