1/4微信号:gzsxsun祖暅原理1、(2016•杨浦14)课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍用祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221425xy,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于.【解析】80π32.(2013•上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.【解析】因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积2/4微信号:gzsxsun相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.3.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理“幂势既同,则积不容异”,可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.4.中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为()A.B.C.D.【解析】设正方体的边长为2r,因为V正方体=(2r)3=8r3,V正方体﹣,∴正方体﹣,⇒V牟合方盖=,牟合方盖的体积与其外切正方体的体积之比为.故选:B.5.“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)3/4微信号:gzsxsun在一起的方形伞(方盖).如图,正边形ABCD是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为r的圆,根据祖暅原理,可求得该几何体的体积为()A.B.C.D.【解析】C.6.我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠棋成立积,缘幂势既同,则积不容异.”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等.其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如下图正方体ABCD﹣A1B1C1D1,求图中四分之一圆柱体BB1C1﹣AA1D1和四分之一圆柱体AA1B1﹣DD1C1公共部分的体积V,若图中正方体的棱长为2,则V=()(在高度h处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S1,截得正方体所得面积为S2,截得锥体所得面积为S3,,⇒S2﹣S1=S3)A.B.C.8D.【解析】在高度h处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S1,截得正方体所得面积为S2,截得锥体所得面积为S3,可得,⇒S2﹣S1=S3,由S3=h2,可得h2dh=h3|=.则则V=8﹣=.故选:A.4/4微信号:gzsxsun7.祖暅原理对平面图形也成立,即夹在两条平行线间的两个平面图形被任意一条平行于这两条直线的直线截得的线段总相等,则这两个平面图形面积相等.利用这个结论解答问题:函数f(x)=2x、g(x)=2x﹣1与直线x=0,x=1所围成的图形的面积为.【解析】1.8.我国南北时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是:如果两等高的几何体在同高处的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,A是一个形状不规则的封闭图形,B是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被A和B所截得的线段长始终相等,则A的面积为.【解析】根据祖暅原理,可得图1的面积为4×2=8.