相似与圆综合题目练习2.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.3.(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.4.(2013•西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD于点E.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为8,CE=2,求CD的长.6.(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.7.(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.9.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.11.(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.12.(2012•岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.14.(2012•陕西)如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.15.(2012•河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是_________,CG和EH的数量关系是_________,的值是_________.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是_________(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是_________(用含a、b的代数式表示).初中数学组卷一.解答题(共15小题)2.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.考点:切线的判定;勾股定理;相似三角形的判定与性质.3545438分析:(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.解答:(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.点评:本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.3.(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.考点:切线的性质;勾股定理;相似三角形的判定与性质.3545438专题:压轴题.分析:(1)连接OC.先由OA=OC,可得∠ACO=∠CAO,再由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD;(2)解法一:如图2①,过点O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂径定理求出AE=,再根据两角对应相等的两三角形相似证明△AEO∽△ADC,由相似三角形对应边成比例得到,求出AO=,即⊙O的半径为;解法二:如图2②,连接BC.先在Rt△ADC中,由勾股定理求出AD=3,再根据两角对应相等的两三角形相似证明△ABC∽△ACD,由相似三角形对应边成比例得到,求出AB=,则⊙O的半径为.解答:(1)证明:连接OC.∵OA=OC,∴∠ACO=∠CAO.∵CD切⊙O于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∴∠DAC=∠CAO,即AC平分∠BAD;(2)解法一:如图2①,过点O作OE⊥AC于E.在Rt△ADC中,AD===3,∵OE⊥AC,∴AE=AC=.∵∠CAO=∠DAC,∠AEO=∠ADC=90°,∴△AEO∽△ADC,∴,即,∴AO=,即⊙O的半径为.解法二:如图2②,连接BC.在Rt△ADC中,AD===3.∵AB是⊙O直径,∴∠ACB=90°,∵∠CAB=∠DAC,∠ACB=∠ADC=90°,∴△ABC∽△ACD,∴,即,∴AB=,∴=,即⊙O的半径为.点评:本题考查了等腰三角形、平行线的性质,勾股定理,垂径定理,切线的性质,相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.4.(2013•西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD于点E.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为8,CE=2,求CD的长.考点:切线的判定;解分式方程;相似三角形的判定与性质.3545438分析:(1)首先连接OA,由BC为⊙O直径,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,则可证得AD是⊙O的切线;(2)易证得△CED∽△OAD,然后设CD=x,则OD=x+8,由相似三角形的对应边成比例,可得方程:,继而求得答案.解答:(1)证明:连接OA,∵BC为⊙O的直径,∴∠BAC=90°,∴∠B+∠ACB=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠CAD=∠B,∴∠CAD+∠OAC=90°,即∠OAD=90°,∴OA⊥AD,∵点A在圆上,∴AD是⊙O的切线;(2)解:∵CE⊥AD,∴∠CED=∠OAD=90°,∴CE∥OA,∴△CED∽△OAD,∴,CE=2,设CD=x,则OD=x+8,即,解得x=,经检验x=是原分式方程的解,所以CD=.点评:此题考查了切线的判定、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.5.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.考点:相似三角形的判定与性质;全等三角形的判定与性质.3545438专题:压轴题.分析:(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.解答:(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin∠B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:.点评:本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.6.(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.考点:切线的判定;相似三角形的判定与性质.3545438分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.解答:证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.7.(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.3545438分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的