含绝对值的不等式考试试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

含绝对值的不等式考试试题及答案例5-3-13解下列不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>53x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。解5-3-14解不等式4<|x2-5x|≤6。解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。“数轴标根法”是确定解集并防止出错的有效辅助方法。例5-3-15解不等式|x+2|-|x-1|≥0。解原不等式同解于|x+2|≥|x-1|(x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。但对其他含多项绝对值的情形,采用此法一般较繁,不可取。例5-3-16解下列不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2}(2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。分析要使不等式有解,必须x+2>0即x>-2。又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。例5-3-18已知a>0,b>0,解不等式|ax-b|<x。解显然x>0,故原不等式同解于注含绝对值的不等式中,若含有参数,则先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功