一、任意三角形外接圆半径设三角形各边边长分别为a,b,c外接圆半径为R,(如右图所示)则sinsincoscos2)cos(222abcba(余弦定理)而RbRb22cos,RbR4sin22RaRa22cos,RaR4sin22即有:abcba2222RaRRbRRaRb44222222即有:222222222)4)(4(RaRbRababcba所以:)4)(4()(222222222aRbRabcbaRab即有:2222242222422222)(416)(4)(4)(baRbaRabcbaRcbaRab所以:])(4[222222abcbaRc,即:])(4[2222222222cbabaRcba所以:))()()((acbbcacbacbaabcR而三角形面积:))()()((4acbbcacbacbaS(海伦公式)所以,有:SabcR4※另一求法,可用正弦定理,即:RAa2sin,而bcacbA2cos222所以:22222222222)(4)2(12)(cos12sin2acbcbabcbcacbaAaAaRabcRαβ二、任意三角形内切圆的半径设三角形各边边长分别为a,b,c内切圆半径为r,(如右图所示)因为内切圆的圆心为各角的角平分线的交点,所以,会有czybyxazx,解得2cbax显然:tanxr,而2cos1)2(cos12cos12sintan2而由余弦定理有:abcba22cos222所以:))(()()(421)2(1tan222222222222cbacbacbaababcbaabcba即有:)(2)()(4))(()()(422222222222cbacbaabcbacbacbaabcbar即:cbaScbaScbaacbbcacbacbar2)(24)(2))()()((xabcRααxyyzzr