2012214JOURNALOFARCHITECTURALEDUCATIONININSTITUTIONSOFHIGHERLEARNINGVol.21No.420122012-03-251031401002-931968-E-mail1819341823@qq.com。包立新,邹毅松400074在桥梁工程课程教学中,拱桥主拱圈和吊桥主缆的悬链线方程的推导是教学难点之一。在教材中,这两部分内容是在不同章节里逐一讲解,教学效果较差,而且缺乏对这两种悬链线方程的比较,学生难以理解。文章从拱桥和吊桥的受力特点出发,对这两种悬链线方程进行了推导和剖析,通过比较分析帮助学生深刻理解其内容,提高学生运用力学知识解决桥梁工程的实际问题,增强学习兴趣。拱桥;吊桥;悬链线方程;桥梁工程TU279.7+2G642.0A1005-2909201204-0059-033、。。。。、。、1-2。1。1952012214Hg=∑Mjf1y1=MxHg2∑MjHgfMxy1。3gx=gd+γy13gxxgdγ。y1=fgj=gd+γf4gj。m=gjgdγ=gj-gdf=gdfm-15m。2d2y1dx2=1Hgd2Mxdx=gxHg6x=l1ε36d2y1dε2=l21gdHg1+m-1y1f7k2=l21gdHgfm-16y1=fm-1chkε-1881x=l1、ε=1、y1=fchk=mk=ch-1m=lnm+m2-槡1m81-4。。32320m20m3。2、3。、。20m。。。。、4-5。2。2∑x=0H1=H2=H9∑y=0dv=v2-v1=-q·dsdvdx=-dsdx·q10v1=H·dsdxds=d()y2+d()x槡2111110H·d2ydx2+q·1+dyd()x槡2=012x=0y=0x=ly=cy=Hqchα-ch2β·xl-()[]α1306α=sh-1β()c/lsh[]β+ββ=ql2H14S=2Hqshβchα-()βΔS=()HS/l2EAS0=S-ΔS15V1=H·shαV2=q2c·cthβ-()116qLcEASS0。。。。。。。。—。、、。。。、。[1]顾懋清,石绍甫.拱桥[M].北京:人民交通出版社,1996.[2]周水兴.桥梁工程[M].2版.重庆:重庆大学出版社,2011.[3]邹昀,王中华,华渊.土木工程专业课程体系的改革和实践[J].高等建筑教育,2007,16(3):72-74.[4]H.M.Irvine.StructureofCables[M].Cambridge,Massa-chusetts,andLondon,England:TheMITPress,1984.[5]PREMKRISHNA.Cable-suspendedroofs[M].Newyork:McGraw-HillBookCompany,Louis,1978.ComparisonoftwocatenaryequationsofarchbridgeandsuspensionbridgeBAOLixinZOUYisongSchoolofCivilEngineeringandArchitectureChongqingJiaotongUniversityChongqing400074P.R.ChinaAbstract:Intheteachingofbridgeengineering,thecatenaryequationdeductionofthemainarchcircleofarchbridgeandthemainpush-towingropeofsuspensionbridgeisoneofdifficulty.Thispartofcontentisexplainedonebyoneindifferentchapter,islesseffective,andlackofthecomparisonbetweenthetwocatenaryequations,studentishardtounderstand.Withthestresscharacteristicofthistwobridgetypes,thepaperanalysesthetwocatenaryequationstohelpthestudentsunderstandthispartofcontentandimprovethestudentsabilitysolvingactualproblemwithmechanicsknowledgeofbridgeengineering,strengthenlearninginterest.Keywords:archbridge;suspensionbridge;catenaryequation;bridgeengineering16