第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在的极限情况,二者一致,在匀速直线运动中二者也一致的。1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。质点沿空间曲线运动时,z何与牛顿运动定律不矛盾。因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。1.5答:即反应位矢大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而只表示大小的改变。如在极坐标系中,而。在直线运动中,规定了直线的正方向后,。且的正负可表示的指向,二者都可表示质点tttt0trVθVrarrVarrθVθVrV2rrVθVr2rrar.2rranaavnavna0,0bbFaFR0bbRF0babbRF与baba00bbbaRF即naa而无aan而无ntaa又有dtdrrdtdrrjirrrdtdrdtdrdtddtdrrdtdrdtdr的运动速度;在曲线运动中,且也表示不了的指向,二者完全不同。表示质点运动速度的大小,方向的改变是加速度矢量,而只是质点运动速度大小的改变。在直线运动中规定了直线的正方向后,二者都可表示质点运动的加速度;在曲线运动中,二者不同,。1.6答:不论人是静止投篮还是运动投篮,球对地的方向总应指向篮筐,其速度合成如题1.6图所示,故人以速度向球网前进时应向高于篮筐的方向投出。静止投篮是直接向篮筐投出,(事实上要稍高一点,使球的运动有一定弧度,便于投篮)。1.7答:火车中的人看雨点的运动,是雨点的匀速下落运动及向右以加速度的匀速水平直线运动的合成运动如题1.7图所示,是固定于车的坐标系,雨点相对车的加速度,其相对运动方程消去的轨迹dtddtdrrdtdrdtdrdtdvdtdvadtdvaadtdn而,vVVV球对人人对地题1-6图VaOaaaVxy题1-7图yxoaavtyatx221txavy222如题图,有人会问:车上的人看雨点的轨迹是向上凹而不是向下凹呢?因加速度总是在曲线凹向的内侧,垂直于方向的分量在改变着的方向,该轨迹上凹。1.8答:设人发觉干落水时,船已上行,上行时船的绝对速度,则①船反向追赶竿的速度,设从反船到追上竿共用时间,则②又竿与水同速,则③①+③=②得1.9答:不一定一致,因为是改变物体运动速度的外因,而不是产生速度的原因,加速度的方向与合外力的方向一致。外力不但改变速度的大小还改变速度的方向,在曲线运动中外力与速度的方向肯定不一致,只是在加速度直线运动二者的方向一致。1.10答:当速度与物体受的合外力同一方位线且力矢的方位线不变时,物体作直线运动。在曲线运动中若初速度方向与力的方向不一致,物体沿出速度的方向减速运动,以后各时刻既可沿初速度方向运动,也可沿力的方向运动,如以一定初速度上抛的物体,开始时及上升过程中初速度的方向运动,到达最高点下落过程中沿力的方向运动。在曲线运动中初速度的方向与外力的方向不一致,物体初时刻速度沿初速度的反方向,但以后既不会沿初速度的方向也不会沿外力的方向运动,外力不断改变物体的运动方向,各时刻的运动方向与外力的方向及初速度的方向都有关。如斜抛物体初速度的方向与重力的方向不一致,重力的方向决定了轨道的形状开口下凹,初速度的方向决定了射高和射程。1.11答:质点仅因重力作用沿光滑静止曲线下滑,达到任意点的速度只和初末时刻的高度差有关,因重力是保守力,而光滑静止曲线给予质点的发向约束力不做功,因此有此结论假如曲线不是光滑的,质点还受到摩擦力的作用,摩擦力是非保守力,摩擦力的功不仅与初末位置有关,还与路径有关,故质点到达任一点的速度不仅与初末高度差有关,还与曲线形状有关。1.12答:质点被约束在一光滑静止的曲线上运动时,约束力的方向总是垂直于质点的运动方向,故约束力不做功,动能定理或能量积分中不含约束力,故不能求出约束力。但用动能定理或能量积分可求出质点在某位置的速度,从而得出,有牛顿运动方程aVnaVs水船VV2VV水船s水船VVtst600)VV(水船600)2tV(水min150mV水na便可求出,即为约束力1.13答:动量动能1.14答:故1.15答:动量矩守恒意味着外力矩为零,但并不意味着外力也为零,故动量矩守恒并不意味着动量也守恒。如质点受有心力作用而运动动量矩守恒是由于力过力心,力对力心的矩为零,但这质点受的力并不为零,故动量不守恒,速度的大小和方向每时每刻都在改变。1.16答:若,在球坐标系中有由于坐标系的选取只是数学手段的不同,它不影响力场的物理性质,故在三维直角坐标系中仍有的关系。在直角坐标系中故事实上据“”算符的性质,上述证明完全可以简写为nnnmaRFnRsmkgmvp.22243231mNmvT8323121212222kjikjivrJ6239632323321msmkgJsmkgJZ222220467.8439632rFF000eeeeeFrrFrFrFr0FkjirFzk,jirrFiFrFyxzyx0000rrrrkjikjikjiFrrFrFrrFrzyxrFrzrFryrFrxrFzyxrFrFrFzyxzyx这表明有心力场是无旋场记保守立场1.17答平方反比力场中系统的势能,其势能曲线如题图1.17图所示,由。若,其势能曲线对应于近日点和远日点之间的一段。近日点处即为进入轨道需要的初动能若则质点的运动无界,对应于双曲线轨道的运动;若位于有界和无界之间,对应于抛物线轨道的运动;这两种轨道的运动都没有近日点,即对大的质点的运动是无界的,当很大时,还是选无限远为零势点的缘故,从图中可知,做双曲轨道运动比抛物轨道和椭圆轨道需要的进入轨道需要的动能要大。事实及理论都证明,平方反比引力场中质点的轨道正是取决于进入轨道时初动能的大小由得即速度的大小就决定了轨道的形状,图中对应于进入轨道时的达到第一二三宇0rFrFrmkrV201T02T03T1T2T3TrrV0E0E0ERe0TTrmR2minrmaxr题1-17图rVETrVETErVT故有因知,0,0EminrmaxrTrVE0E0Err0rV0002122ErmkmvrkrkrkV2222V321,,TTT宙速度所需的能量由于物体总是有限度的,故有一极小值,既相互作用的二质点不可能无限接近,对于人造卫星的发射其为地球半径。为地面上发射时所需的初动能,图示分别为使卫星进入轨道时达到一二三宇宙速度在地面上的发射动能。.为进入轨道前克服里及空气阻力做功所需的能量。1.18答:地球附近的物体都受到随地球自转引起的惯性离心力的作用,此力的方位线平行于赤道平面,指向背离地轴。人造地球卫星的轨道平面和地球赤道平面的夹角越大,则卫星的惯性离心力与轨道平面的家教越大,运动中受的影响也越大,对卫星导向控制系统的要求越高。交角越大,对地球的直接探测面积越大,其科学使用价值越高。1.19答:对库仑引力场有,轨道是双曲线的一点,与斥力情况相同,卢瑟福公式也适用,不同的是引力情况下力心在双曲线凹陷方位内侧;若,轨道椭圆或抛物线,卢瑟福公式不适用,仿照课本上的推证方法,在入射速度的情况下即可得卢瑟福公式。近代物理学的正,负粒子的对撞试验可验证这一结论的近似正确性。2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),reReRrVET0030201,,TTTiiTT03,2,1i0E,r2V4,212022〉则,〉若其中kzekErkmv0,22ErkV则0E0ErkV20n3且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,使物体发生形变,内力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。只有完全弹性碰撞或碰撞物体是刚体时,即相撞物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。2.7.答:设质心的速度,第个质点相对质心的速度,则,代入质点组动量定理可得这里用到了质心运动定理。故选用质心坐标系,在动量定理中要计入惯性力。但质点组相对质心的动量守恒。当外力改变时,质心的运动也改变,但质点组相对于质心参考系的动量不变,即相对于质心参考系的动量不受外力影响,这给我们解决问题带来不少方便。值得指出:质点组中任一质点相对质心参考系有,对质心参考系动量并不守恒。2.8.答不对.因为人抛球前后球与船和人组成的系统的动量守恒,球抛出后船和人的速度不再是。设船和人的质量为,球抛出后船和人的速