完整版全等三角形总复习PPT课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二章全等三角形总复习全等形全等三角形性质应用全等三角形对应边(高线、中线)相等全等三角形对应角(对应角的平分线)相等全等三角形的面积相等SSSSASASAAASHL解决问题角的平分线的性质角平分线上的一点到角的两边距离相等到角的两边的距离相等的点在角平分线上判定条件(尺规作图)判定三角形全等必须有一组对应边相等.三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:三角形全等判定方法1全等三角形的判定方法三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EF∠A=∠DAB=DE∠B=∠E在△ABC和△DEF中∴△ABC≌△DEF(ASA)有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法3三角形全等判定方法4有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。在△ABC和△DEF中∠A=∠D∠B=∠EBC=EF∴△ABC≌△DEF(AAS)三角形全等判定方法5有一条斜边和一条直角边对应相等的两个直角三角形全等(HL)。在Rt△ABC和Rt△DEF中AB=DE(已知)AC=DF(已知)∴△ABC≌△DEF(HL)ABCDEF1.全等三角形的性质:对应边、对应角、对应线段相等,周长、面积也相等。2.全等三角形的判定:知识点①一般三角形全等的判定:SAS、ASA、AAS、SSS②直角三角形全等的判定:SAS、ASA、AAS、SSS、HL知识点3.三角形全等的证题思路:已知一边一角ASA找夹边已知两角SAS找夹角已知两边SSS找另一边HL找直角SAS找夹角的另一边边为角的邻边AAS找任一角ASA找夹角的另一角AAS找边的对角AAS找任一边①②③边为角的对边到角的两边的距离相等的点在角的平分线上。∵QD⊥OA,QE⊥OB,QD=QE(已知).∴点Q在∠AOB的平分线上.(到角的两边的距离相等的点在角的平分线上)角的平分线上的点到角的两边的距离相等.∵QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上(已知)∴QD=QE(角的平分线上的点到角的两边的距离相等)二.角的平分线:1.角平分线的性质:2.角平分线的判定:2.如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB、BC、CA的距离相等∵BM是△ABC的角平分线,点P在BM上,PD⊥AB于D,PE⊥BC于EABCPMNDEF∴PD=PE(角平分线上的点到这个角的两边距离相等).同理,PE=PF.∴PD=PE=PF.即点P到三边AB、BC、CA的距离相等证明:过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F3.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于MGHM∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC∴FG=FM(角平分线上的点到这个角的两边距离相等).又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC∴FM=FH(角平分线上的点到这个角的两边距离相等).∴FG=FH(等量代换)∴点F在∠DAE的平分线上二、全等三角形识别思路复习如图,已知△ABC和△DCB中,AB=DC,请补充一个条件-----------------------,使△ABC≌△DCB。思路1:找夹角找第三边找直角已知两边:∠ABC=∠DCB(SAS)AC=DB(SSS)∠A=∠D=90°(HL)ABCD如图,已知∠C=∠D,要识别△ABC≌△ABD,需要添加的一个条件是------------------。思路2:找任一角已知一边一角(边与角相对)(AAS)∠CAB=∠DAB或者∠CBA=∠DBAACBD如图,已知∠1=∠2,要识别△ABC≌△CDA,需要添加的一个条件是-----------------思路3:已知一边一角(边与角相邻):ABCD21找夹这个角的另一边找夹这条边的另一角找边的对角AD=CB∠ACD=∠CAB∠D=∠B(SAS)(ASA)(AAS)如图,已知∠B=∠E,要识别△ABC≌△AED,需要添加的一个条件是--------------思路4:已知两角:找夹边找一角的对边ACDEAB=AEAC=AD或DE=BC(ASA)(AAS)例题选析例1:如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一具条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=ACB例2:已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2,图中全等的三角形共有()A.1对B.2对C.3对D.4对D已知:AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.例3.ABCD例4:下面条件中,不能证出Rt△ABC≌Rt△A'B'C'的是[](A.)AC=A'C',BC=B'C'(B.)AB=A'B',AC=A'C'(C.)AB=B'C',AC=A'C'(D.)∠B=∠B',AB=A'B'C例5:如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。BE=EH例7、如图,△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD、BE相交于点F。如果BF=AC,那么∠ABC的度数是()A、400B、450C、500D、600BFDEBCA例8.如图,在△ABC中,两条角平分线BD和CE相交于点O,若∠BOC=1200,那么∠A的度数是.ABCDEO600THANKYOUSUCCESS2020/3/1023可编辑例9、如图:在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE=。12cABDE10.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm。求:BE的长。ABCDE1.已知BD=CD,∠ABD=∠ACD,DE、DF分别垂直于AB及AC交延长线于E、F,求证:DE=DF证明:∵∠ABD=∠ACD()∴∠EBD=∠FCD()又∵DE⊥AE,DF⊥AF(已知)∴∠E=∠F=900()在△DEB和△DFC中∵∴△DEB≌△DFC()∴DE=DF()(已知)=(已证)=已证CDBDFCDEBDFE)(全等三角形的对应边相等AAS垂直的定义等角的补角相等已知2.点A、F、E、C在同一直线上,AF=CE,BE=DF,BE∥DF,求证:AB∥CD。证明:AEB≌CFDCEAFCFAEBE又∥DF21DFBE又CAAB∥CD3.如图CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点O,且∠1=∠2,求证OB=OC。证明:∵∠1=∠2CD⊥AB,BE⊥AC∴OD=OE(角平分线的性质定理)在△OBD与△OCE中∠BOD=∠COE(对顶角相等)OD=OE(已证)∠ODB=∠OEC(垂直的定义)∴△OBD≌△OCE(ASA)∴OB=OC294.如图,CA=CB,AD=BD,M、N分别是CA、CB的中点,证明DM=DN,ACDBMN5.已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=ADEDCAB证明:∵△ABC和△ECD都是等边三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD6.如图A、B、C在一直线上,△ABD,△BCE都是等边三角形,AE交BD于F,DC交BE于G,求证:BF=BG。证明:∵△ABD,△BCE是等边三角形。∴∠DBA=△EBC=60°∵A、B、C共线∴∠DBE=60°∴∠ABE=∠DBC在△ABE与△DBC中AB=DB∠ABE=∠DBCBE=BC∴△ABE≌△DBC(SAS)∴∠2=∠1在△BEF与△BCG中∠EBF=∠CBGBE=BC∠2=∠1∴△BEF≌△BCG(ASA)∴BF=BG(全等三角形对应边相等)7:如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中AB=AB∠1=∠2BC=BD∴△ABC≌△ABD(SAS)∴AC=AD338.已知:ΔABC和ΔBDE是等边三角形,点D在AE的延长线上。求证:BD+DC=ADABCDE分析:∵AD=AE+ED∴只需证:BD+DC=AE+ED∵BD=ED∴只需证DC=AE即可。9.如图AB//CD,∠B=90º,E是BC的中点,DE平分∠ADC,求证:AE平分∠DABCDBAEF证明:作EF⊥AD,垂足为F∵DE平分∠ADCAB//CD,∴∠C=∠B又∵∠B=90º∴∠C=90º又∵EF⊥AD∴EF=CE又∵E是BC的中点∴EB=EC∴EF=EB∵∠B=90º∴EB⊥AB∴AE平分∠DAB∴BC⊥DC3510.如图,AB=DE,AF=CD,EF=BC,∠A=∠D,试说明:BF∥CEABCDEF11.求证:三角形一边上的中线小于其他两边之和的一半。已知:如图,AD是△ABC的中线,求证:)(21ACABADABCDE证明:延长AD到E,使DE=AD,连结BEEDBADC∵AD是△ABC的中线∴BD=CD又∵DE=AD∴△ADC≌△EDB∴AC=EB在△ABE中,AEAB+BE=AB+AC即2ADAB+AC∴)(21ACABAD12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。ACEBD要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补)13.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EFBCAFED14.已知:如图21,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,DB=DC,求证:EB=FC15.已知:如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:△ADG为等腰直角三角形。GHFEDCBA16.如图,在R△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.14、如图,在△ABC中,AD为BC边上的中线,试说明AB+AC与2AD之间的大小关系。解:延长AD至E,使DE=AD在△ABD与△ECD中∵BD=DC(中线的定义)∠ADB=∠EDC(对顶角相等)AD=DE∴△ABD≌△ECD(SAS)根据全等三角形对应边相等∴AB=EC在△AEC中:AC+EC>AE又∵AE=2AD∴AB+AC>2AD小结:对于三角形的中线,我们可以通过延长中线的1倍,来构造全等三角形。联想:对于三角形的角平分线,有时我们也可进行翻折构造全等三角形。EDBAC15、已知在△ABC中,AD是角平分线,且AC=AB+BD,试说明:∠B=2∠C解:在AC上截取AE=AB,连结DE在△AED与△ABD中∵AE=AB∠EAD=∠BAD(角平分线

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功