结构力学朱慈勉版课后答案【重要】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

朱慈勉结构力学第2章课后答案全解(b)解:基本结构为:1M2MpMMEIEI1086623323326611EI=常数6m6m6mEDACB20kN/mX1X120kN/mX2X2363361111180901503015003323326612EIEIEI1086623323326622EIEIp27003231806212362081632323180621121EIEIp54032318062123620816323231806211225250540108027001082111XXEIXEIEIXEImKNMCA9035253180mKNMCB12035253180mKNMCD3056(c)解:基本结构为:6m3m5III10kN·m10kN·mEA=∞CABD5I12m10kN·m10kN·mX110kN·m11933910kN·m10kN·m10101N1MpMEIIEEI5558293299233256633263111EIIEp144210310910923102566101111pX29.11XmKNMAC61.11029.19mKNMDA13.61029.13mKNMDC87.329.13M题6-6图6-7试用力法计算图示组合结构,求出链杆轴力并绘出M图。(a)解:基本结构为:PFlllEIABCFP4×2akθ==12EIlEA==2EIl23.873.876.136.131.611.611l2lFpPF1MpMEIllklllEIlEAl272222262311EIlFlklFllFllFEIlppppp222263101111pXpFX721lFlFlFMpppA73272lFp73lFp72M(b)6M(d)362qlM(e)(f)50kN4×2a2a2a4FPGDEFHIaaaaABCDEFGqqaEAEI=常数EA=EI/a21(BEH杆弯曲刚度为2EI,其余各杆为EI)取1/2结构:=+①②②中弯矩为0。考虑①:反对称荷载作用下,取半结构如下:=+③④④中无弯矩。考虑③:弯矩图如下:(g)FP4×2aaaEI=常数ADk=3EI4a3kBGCEFpF2pF2pFpFpFpFpFpFpFpFpFpFpFpFpFpFpFpFpF2pF2pF2pF2pF2pF2pF2pF2pF2pF2pF2pF2pFaFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFp2aFpaFpaFp解:原结构=+①②①弯矩为0。反对称荷载下:基本结构为:X112a1MpMEIaaaaEI38322222113112pF2pF2pF2pF2pF2pF2pFaFp2aFp2EIaFaFaaFaEIapppp1252222631pppFXXEIaaEIFXEIakXX485341253811331311111M图如下:(h)6-9试回答:用力法求解超静定结构时应如何恰当地选取基本结构?6-10试绘出图示结构因支座移动产生的弯矩图。设各杆EI相同。(a)同济大学朱慈勉结构力学第7章位移法习题答案7-1试确定图示结构的位移法基本未知量数目,并绘出基本结构。(a)(b)(c)EIEIEI2EI2EI2l2l2lABDElCEI=常数4FP4×2alhllllACEBDFI2I2I2IIIIIIaFp485aFp485aFp247aFp2471个角位移3个角位移,1个线位移4个角位移,3个线位移(d)(e)(f)EI1=∞EAEIEI1=∞3个角位移,1个线位移2个线位移3个角位移,2个线位移(g)(h)(i)k一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。7-4试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5试用位移法计算图示结构,并绘出其内力图。(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。11r11Z3i4i2iii1M图1pR213ql216qlpM图lllABCDiiiq(2)位移法典型方程11110prZR(3)确定系数并解方程iqlZqliZqlRirp24031831,821212111(4)画M图2724ql2524qlM图218ql216ql(b)解:(1)确定基本未知量1个角位移未知量,各弯矩图如下11r11Z1M图32EIEI12EI590pM图(2)位移法典型方程11110prZR(3)确定系数并解方程4m4m4mACDB10kNEI2EI2.5kN/mEI1115,352prEIR153502EIZ114ZEI(4)画M图()KNmM图2640147(c)解:(1)确定基本未知量一个线位移未知量,各种M图如下11r1M图11Z27EI227EI27EI1243EI2243EI1243EIpM图pF1pR(2)位移法典型方程11110prZR(3)确定系数并解方程1114,243pprEIRF140243pEIZF6m6m9mABCEA=∞FP4×2a2EIEIEIDEFEA=∞12434ZEI(4)画M图94pF94pF92pFM图(d)解:(1)确定基本未知量一个线位移未知量,各种M图如下11Z2/25EAa4/25EAa11r1M图25EA11r1M图2/25EAa2/25EAa简化a2aa2aaEAEAABCDEFFPFPEI1=∞图1pRpFpF45a35a15apM(2)位移法典型方程11110prZR(3)确定系数并解方程11126/,55pprEAaRF126055pEAZFa13aZEA(4)画M图图M0.6pFapFa1.2pF0.6pF(e)解:(1)确定基本未知量两个线位移未知量,各种M图如下llEAABCDEAEAFP4×2a图11Z11r21r112121424EArlEArl1M2EAlEAl图21Z12r22r22214EArl2M2EAlEAl图120pppRFRpM1pRpF000(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程1112212212221,44214,0pppEAEArrrllEArlRFR代入,解得121222121212pplZFEAlZFEA(4)画M图图M122212pF2212pF1212pF7-6试用位移法计算图示结构,并绘出M图。(a)解:(1)确定基本未知量两个角位移未知量,各种M图如下23EI13EI23EI23EI13EI1121213rEIrEI图1M23EI23EI13EI22116rEI图2M13EI13EI10kN/mACBEDF6m6m6m6mEI=常数11300ppRR图pM30(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程111221221212,311630,0pprEIrrEIrEIRR代入,解得1215.47,2.81ZZ(4)画最终弯矩图35.16图M19.699.3810.313.271.871.40(b)解:(1)确定基本未知量两个位移未知量,各种M图如下4i2i3i4i2i11r21r图1MACEDEI=常数6m6m6mB10kN/miii12r22r图2Mi/21pR2pR图pM3030(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程111221221211,03430,30pprirrirRKNRKN代入,解得123011,4011ZZii(4)画最终弯矩图图M75.4520.9129.0934.558.1820(c)ACBEDF30kNEI=常数2m2m2m2m2m解:(1)确定基本未知量两个位移未知量,各种M图如下图21ri4i2i3i3i1M11r图22r2M12r32i32i1pR30KN2pR图pM(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程1112212212311,2640,30ppirirrirRRKN代入,解得126.31646.316,ZZEIEI(4)求最终弯矩图图M4.2125.2612.636.329.47(d)解:(1)确定基本未知量两个位移未知量,各种M图如下11r11Z4EIl2EIl3EIl3EIl3EIl21r图1M12r21Z23EIl23EIl22r图2M26EIl26EIlABEDFEI=常数llllCGFqQL2lql1pR218ql2pRpM2116ql(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程1112212222212133,181,16ppEIEIrrrllEIrlRqlRql代入,解得341266211,36003600qlqlZZEIEI(4)求最终弯矩图图20.125qlM20.176ql20.008ql20.315ql20.231ql20.278ql20.055ql(e)解:(1)确定基本未知量两个角位移未知量,各种M图如下8m4m4m4mABCD50kN·m80kN·m20kN4m10kN·m2EIEIEI11r21r11Z34EI12EI14EI1M图12r22r21Z38EI12EI14EI2M图pM图50252020202525(2)位移法典型方程1111221211222200pprZrZRrZrZR(3)确定系数并解方程111221221251,447845,0pprEIrrEIrEIRKNmR代入,解得1238.18,10.91ZZ(4)求最终弯矩图M图25.9115.913.647-7试分析以下结构内力的特点,并说明原因。若考虑杆件的轴向变形,结构内力有何变化?(a)(b)(c)(d)(e)(f)FPFP4×2aFPqEI1=∞EI对称轴FP4×2aFP4×2aM4×2a7-8试计算图示具有牵连位移关系的结构,并绘出M图。(a)解:(1)画出pMMM,,21图2EI11r11Z21r29EI29EI29EI2EI2EI图M11r481EI43EI21r43EI0由图可得:1112211124,813rEIrrEI21r21Z22r29EI12EI2EI2EI图22r43EI12EI16EI16EI32EI16EI2M16EI118EI由图可知:22149rEI1pR2pR图20KNpM20kN4×2a8m8m6m3mACDEBFGEI1=∞EI1=∞3EI3EI3EIEI12

1 / 57
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功