?(时间90分钟满分100分)?1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C2.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=B4.如图,已知AB=DC,AD=BC,E,F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等6、如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC2题图一、填空题(每题3分,共30分)AODCBADACBADBCEFABCDEF123题图4题图6题图DCD提示AD?DACEB7.如图BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.458.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A.AF=2BFB.AF=BFC.AF>BFD.AF<BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°FEDCBA7题图8题图9题图10题图BBDC提示?二、填空题(每小题3分,共24分11.如图,∠BAC=∠ABD,请你添加一个条件:,使OC=OD(只添一个即可).12.如图,在△ABC中,AB=AC,BE、CF是中线,则由可得△AFC≌△AEB.13.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,EO=10,则∠DBC=,FO=.14.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.DOCBAABCEFABCDFEO11题图12题图13题图16题图∠C=∠D或∠ABC=∠BAD或AC=BD或∠OAD=∠OBCSAS60°1014互补或相等5?17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BCB′C′边上的高,且AB=A′B′,AD=A′D′.若使△ABC≌△A′B′C′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,求:∠P的度数及DE的长.DCBAEABCDA′B′D′C′35°答案不惟一解:∵△DEF≌△MNP,∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52°=80°,DE=MN=12cm?20.如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,试说明AD+AB=BE.21.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON平分,小梅设计了如下方案:在射线OM,ON上分别取OA=OB,过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B交OM于E,AD.EB交于点C,过O,C作射线OC即为MON的平分线,试说明这样做的理由.ADECBFG?23.图①所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为②时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF.(2)请你判断BE+CF与EF的大小关系,并说明理由.GDFACBEGDFACBE②①∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEF=∠BFE=90°.∵AE=CF,∴AE+EF=CF+FE,即AF=CE.在Rt△ABF与Rt△CDE中,AB=CD,AF=CE,∴Rt△ABF≌Rt△CDE,∴BF=DE.在Rt△DEG≌Rt△BFG中,∠DGE=∠BGF,DE=BF,∴Rt△DEG≌Rt△BFG,∴EG=FG,即BD平分EF.若将△DEC的边EC沿AC方向移动到图2时,其余条件不变,上述结论仍旧成立,理由同上.提示:寻找AF与CE的关系是解决本题的关键(1)∵AC∥BG,∴∠GBD=∠C,在△GBD与△FCD中,∠GBD=∠C,BD=CD,∠BDG=∠CDF,∴△GBD≌△FCD,∴BG=CF.(2)BE+CF>EF,又∵△GBD≌△FCD(已证),∴GD=FD,在△GDE与△FDE中,GD=FD,∠GDE=∠FDE=90°,DE=DE,∴△GDE≌△FDE(SAS),∴EG=EF,∵BE+BG>GE,∴BE+CF>EF.?25.(1)如图1,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?AGFCBDE图1图2解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,∴这条小路的面积为(a+2b)平方米FAGCBDEMNS△ABC=S△AEG?提示:∵△ABD≌△CDB,∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD,∴△ABD和△CDB的周长和面积都分别相等.∵∠ADB=∠CBD,∴AD∥BC.DACB解析:在Rt△ADB与Rt△EDC中,AD=CD,BD=ED,∠ADB=∠EDC=90°,∴△ADB≌△CDE,∴∠ABD=∠E.在Rt△BDC与Rt△EDC中,BD=DE,∠BDC=∠EDC=90°,CD=CD,∴Rt△BDC≌Rt△EDC,∴∠DBC=∠E.∴∠ABD=∠DBC=1/2∠ABC,∴∠E=∠DBC=1/2×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD=∠DBC=∠E.DACEB?