遗传算法优化的BP神经网络建模

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

遗传算法优化的BP神经网络建模十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。目标:对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。步骤:未经遗传算法优化的BP神经网络建模1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。2、数据预处理:归一化处理。3、构建BP神经网络的隐层数,次数,步长,目标。4、使用训练数据input_train训练BP神经网络net。5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。6、分析预测数据与期望数据之间的误差。遗传算法优化的BP神经网络建模1、读取前面步骤中保存的数据data;2、对数据进行归一化处理;3、设置隐层数目;4、初始化进化次数,种群规模,交叉概率,变异概率5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数;6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值;7、将得到最佳初始权值和阈值来构建BP神经网络;8、使用训练数据input_train训练BP神经网络net;9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理;10、分析预测数据与期望数据之间的误差。算法流程图如下:运行后使用遗传算法改进前后误差的对比图:程序:1、未经遗传算法优化的BP神经网络建模clear;clc;%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%N=2000;%数据总个数M=1500;%训练数据%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%fori=1:Ninput(i,1)=-5+rand*10;input(i,2)=-5+rand*10;endoutput=input(:,1).^2+input(:,2).^2;savedatainputoutputloaddata.mat%从1到N随机排序k=rand(1,N);[m,n]=sort(k);%找出训练数据和预测数据input_train=input(n(1:M),:)';output_train=output(n(1:M),:)';input_test=input(n((M+1):N),:)';output_test=output(n((M+1):N),:)';%数据归一化[inputn,inputs]=mapminmax(input_train);[outputn,outputs]=mapminmax(output_train);%构建BP神经网络net=newff(inputn,outputn,5);net.trainParam.epochs=100;net.trainParam.lr=0.1;net.trainParam.goal=0.0000004;%BP神经网络训练net=train(net,inputn,outputn);%测试样本归一化inputn_test=mapminmax('apply',input_test,inputs);%BP神经网络预测an=sim(net,inputn_test);%%网络得到数据反归一化BPoutput=mapminmax('reverse',an,outputs);figure(1)%plot(BPoutput,':og');scatter(1:(N-M),BPoutput,'rx');holdon;%plot(output_test,'-*');scatter(1:(N-M),output_test,'o');legend('预测输出','期望输出','fontsize',12);title('BP网络预测输出','fontsize',12);xlabel('样本','fontsize',12);xlabel('优化前输出的误差','fontsize',12);figure(2)error=BPoutput-output_test;plot(1:(N-M),error);xlabel('样本','fontsize',12);ylabel('优化前输出的误差','fontsize',12);%savenetnetinputsoutputs2、遗传算法优化的BP神经网络建模(1)主程序%清空环境变量clcclear%读取数据loaddata.mat%节点个数inputnum=2;hiddennum=5;outputnum=1;%训练数据和预测数据input_train=input(1:1500,:)';input_test=input(1501:2000,:)';output_train=output(1:1500)';output_test=output(1501:2000)';%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%构建网络net=newff(inputn,outputn,hiddennum);%%遗传算法参数初始化maxgen=10;%进化代数,即迭代次数sizepop=30;%种群规模pcross=[0.3];%交叉概率选择,0和1之间pmutation=[0.1];%变异概率选择,0和1之间%节点总数numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;lenchrom=ones(1,numsum);bound=[-3*ones(numsum,1)3*ones(numsum,1)];%数据范围%------------------------------------------------------种群初始化------------------------------%--------------------------individuals=struct('fitness',zeros(1,sizepop),'chrom',[]);%将种群信息定义为一个结构体%avgfitness=[];%每一代种群的平均适应度bestfitness=[];%每一代种群的最佳适应度bestchrom=[];%适应度最好的染色体%初始化种群fori=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound);%编码x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);%染色体的适应度end%找最好的染色体[bestfitnessbestindex]=min(individuals.fitness);bestchrom=individuals.chrom(bestindex,:);%最好的染色体%avgfitness=sum(individuals.fitness)/sizepop;%染色体的平均适应度%记录每一代进化中最好的适应度和平均适应度%trace=[avgfitnessbestfitness];%%迭代求解最佳初始阀值和权值%进化开始fori=1:maxgeni%选择individuals=Select(individuals,sizepop);%avgfitness=sum(individuals.fitness)/sizepop;%交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);%变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound);%计算适应度forj=1:sizepopx=individuals.chrom(j,:);%解码individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);%代替上一次进化中最好的染色体ifbestfitnessnewbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;%avgfitness=sum(individuals.fitness)/sizepop;%trace=[trace;avgfitnessbestfitness];%记录每一代进化中最好的适应度和平均适应度end%%遗传算法结果分析%figure(3)%[rc]=size(trace);%plot([1:r]',trace(:,2),'b--');%title(['适应度曲线''终止代数='num2str(maxgen)]);%xlabel('进化代数');ylabel('适应度');%legend('平均适应度','最佳适应度');disp('适应度变量');x=bestchrom;%%把最优初始阀值权值赋予网络预测%%用遗传算法优化的BP网络进行值预测w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%%BP网络训练%网络进化参数net.trainParam.epochs=100;net.trainParam.lr=0.1;%net.trainParam.goal=0.00001;%网络训练[net,per2]=train(net,inputn,outputn);%%BP网络预测%数据归一化inputn_test=mapminmax('apply'

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功