1高等数学第二十五讲2习题课一、求不定积分的基本方法二、几种特殊类型的积分不定积分的计算方法第四章3一、求不定积分的基本方法1.直接积分法通过简单变形,利用基本积分公式和运算法则2.换元积分法第一类换元法第二类换元法(注意常见的换元积分类型)(代换:))(tx求不定积分的方法.4dxxxf21)1((1)xdxf1)1((2)dxxxf1)(xdxf)(2(3)dxxxf21)(arcsin)(arcsin)(arcsinxdxf(4)dxxxf21)(arctan)(arctan)(arctanxdxf(5)xdx2sinxd2sinxd2cos5(7)dxxx2ln1xxdln(8)(9)xdx1)1ln1(xxd1ln1dxx)11(2)1(xxd(10)dxx)11(2)1(xxd(6)dxx)ln1()ln(xxd(11)dxx211)1ln(2xxd63.分部积分法vuvud使用原则:1)由dv易求出v;2)比uvd好求.一般经验:按“反,对,幂,三,指”的顺序,排前者取为u,排后者取为.vuvd7例1.求解:原式xxxxxd233222xxxd)(1)(23232xx2323232)(1)(dln1xaaaxxdlndCx3ln2ln)arctan(328dxxxx42cossin3xxdxdxxx322tansectan3xdxxxxtan)1(sectan23Cxxxxcoslntan21tan23例29例3.求解:xearctan原式xedxxeearctanxexeexxd12xxeearctanxeeexxxd1)1(222xxeearctanxCex)1(ln22110例4.求解法1:原式2d2cos2xxx2tandxxln(1cos)xtan2lncosln1cos22xxxxC分部积分(1cos)1cosdxx11例4.求解法2:原式xxxxxd2cos22cos2sin222tandxxxxd2tanCxx2tan分部积分1223/2ln(1)xxdxx21ln1xdx221111lnxxdxxCxxxx)ln(ln221111例522ln111xdxxxx13例6.求解:设1)(xxF1x,1x1x,1x则1,1221xCxx1,2221xCxx因连续,得21211121CC221121CC记作C得1,21221xCxx1,21221xCxx,)1(221Cx,)1(221Cx利用14例7试求)(xF)(lim0xFx解:被积函数中含有绝对值符号,故分段积分dxexdxex,1Cexdxex,2Cex其中为任意常数由原函数的定义,可知连续,得)0(F11C)(lim0xFx][lim20Cexx21C212CC0x0x)(xF15例8.设解:令,tyx求积分即txy,123ttx,12tty而ttttxd)1()3(d22221原式ttttd)1()3(2222123tt132ttCyx1)(ln22116解.)1ln(arctan2dxxxx求dxxx)1ln(2)1()1ln(2122xdx.21)1ln()1(21222Cxxx])1ln()1[(arctan21222xxxxd原式xxxxarctan])1ln()1[(21222dxxxx]1)1[ln(21222例917.2)1ln(2]3)1ln()1[(arctan212222Cxxxxxxxdxxxx11ln11102例Cxxxxdxx11411111212lnlnlnxxxxarctan])1ln()1[(21222dxxxx]1)1[ln(2122218例11.设解:为的原函数,且求由题设,)()(xfxF则故即,因此故又19二、几种特殊类型的积分1.一般积分方法有理函数分解多项式及部分分式之和指数函数有理式指数代换三角函数有理式万能代换简单无理函数三角代换根式代换202.需要注意的问题(1)一般方法不一定是最简便的方法,(2)初等函数的原函数不一定是初等函数,要注意综合使用各种基本积分法,简便计算.因此不一定都能积出.例如,,)10(dsin122kxxk21例1.求.1d632xxxeeex解:令,6xet则,ln6txtxtdd6原式ttttt)1(d623tttt)1)(1(d62tdtln61ln3t)1ln(232tCtarctan322例2.求不定积分解:原式)1)(2(12uuuA21uB1uC23例3I12xxdx解法112tttdI当1x时,令,20secttxsectansectanttdtIttctcx1arccos当1x时,令,1ttx12tttdct1arccoscx1arccos24例3I12xxdx解法2令,1tx21tdtIcx1arccos,12dttdxctarccos,10t21tdtIcx1arccos,12dttdx1arcsinct,01t25I342)1()1(xxdx解:令,113txx3211xt232)1(6ttdtdxI322)11()1(xxxdxtdI23,1213txct23,113cxx23例4321,1tx26例5.求解:21]5)1ln([2xx原式]5)1ln([d2xx21xxxxxd)1(2121dxx325)1ln(2xxC23分析:]5)1ln([d2xx27高等数学第二十六讲28例6:设,2ln)1(222xxxf且xxfln)(求().xdx解:1111ln22xx)1(2xf1)(1)(ln)(xxxfxlnxxx1)(1)(2()11xxxdx)(xdx)121(Cxx1ln229例7已知],1)([)(xfxxf求).(xf解],1)([)(xfxxf)],(1[)(xfxxf解得221)(xxxxfdxxxxxf221)(dxxxx)1111(22.arctan)1ln(212cxxx30dxxx53cossin1提示:xx53cossin1xxxx5322cossincossinxxxx335cossin1cossin11cossin22xxxx5cossinxx3cossin2xxcossin13xx5cossinxx3cossin2x2sin6xx3sincos例831例9:求sincossincosxxdxxx提示:原式21dxxxxxcossin1)cos(sin221dxxx)cos(sin221)4sin()4(xxdsin()sincossincos444xxx32例10求dxxxxx23cossincosxesin提示:原式xdxexsinsinxesinxdxxsectandxexsinxxesinxexsinsecdxexecxsxsincos33例12.求解:,sincossin1xdxbxaxI因为.sincoscos2xdxbxaxI及12IbIaxdxbxaxbxasincossincos1Cx12IabIxdxbxaxaxbsincossincos2sincoslnCxbxaCxbxaabxba)sincosln(122Cxbxabaxba)sincosln(12234例6.求解:取23xx132xx660xe2xe221xe241xe281xe2161xe2原式)2(321xx)13(241xx681Cxxxex)7264(232816161CxxaxaexPxkndcossin)(说明:此法特别适用于如下类型的积分:35例8.求解法1.查积分表令,2xu则原式P349公式37Cuu33ln3122Cxx2394ln31222213uud2u223uudu36例8.求解法2.令,942xu则原式9422xxxdx223uud,9422xuxdxudu4Cuu33ln61Cxx394394ln6122Cxx2222)394(ln61Cxx2394ln31244(P348公式21)37例7.求解:令3)1(2x4)1(2x,tan21tx则tdtxd2sec2原式3tan2t)3tan4(2t4tan42ttsec2tdtttt22cos3sin4cos3sin2tttdt22cos3sin4sin2tttdt22cos3sin4cos3ttd2cos4cos23sinsin32ttdtdt2sec238例7.求解:令,tan21tx则tdtxd2sec2原式ttd2cos4cos23sinsin32ttdttcos2cos2ln21P348公式21P348公式19Ct3sinarctan3152152ln2122xxxx1x2t522xxCxxx)52(31arctan32