投影与视图全章教案汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题:3.1投影(1)一、教学目标:1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。二、教学重、难点教学重点:理解平行投影和中心投影的特征;教学难点:在投影面上画出平面图形的平行投影或中心投影。三、教学过程:(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。(有条件的)放映电影《小兵张嘎》部分片段---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏(二)你知道吗(有条件的)出示投影:北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。如图4-14,当线段AB与投影面平行时,AB的中心投影A‘B’把线段AB放大了,且AB∥A’B‘,△OAB~OA‘B’.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A‘B’C‘也把△ABC放大了,从△ABC到△A‘B’C‘是我们熟悉的位似变换。4、请观察平行投影和中心投影,它们有什么相同点与不同点?平行投影与中心投影的区别与联系区别联系光线物体与投影面平行时的投影平行投影平行的投射线全等都是物体在光线的照射下,在某个平面内形成的影子。(即都是投影)中心投影从一点出发的投射线放大(位似变换)(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;(2)一个正方形纸板ABCD和投影面平行(如图),投射线和投影面垂直,点C在投影面的对应点为C’,请画出正方形纸板的投影示意图。(3)两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。解:分别连结标杆的顶端与投影上的对应点(图4-17).很明显,图(1)的投射线互相平行,是平行投影.图(2)的投射线相交于一点,是中心投影。四、学习反思:我们这节课学习了什么知识?五、作业:画出一个四边形的不同平行投影图和中心投影图课题:3.1投影(二)一、教学目标:1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力。二、教学重、难点教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影教学难点:归纳正投影的性质,正确画出简单平面图形的正投影三、教学过程:(一)复习引入新课下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2)(3)的投影线与投影面的位置关系有什么区别?解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。(二)合作学习,探究新知1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状通过观察,我们可以发现;(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为ABA2B2(3)当线段AB垂直于投影面P时,它的正投影是一个点A32、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面结论:(1)当纸板P平行于投影面Q时.P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时.P的正投影与P的形状、大小发生变化;(3)当纸板P垂直于投影面Q时.P的正投影成为一条线段.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).分析口述画图要领解答按课本板书4、练习5、谈谈收获三、作业课题:3.2直棱柱、圆锥的侧面展开图教学目标:【知识与技能】1.认识直棱柱、圆锥的侧面展开图,并会计算.2.进一步培养我们的空间观念和综合运用知识的能力.【过程与方法】1.通过动手操作,经历体验,合作探究,培养我们的观察能力、抽象思维能力和概括能力.2.通过直棱柱、圆锥侧面展开图的教学,向我们渗透化曲面为平面,化立体图形为平面图形的“转化”思想.【情感态度】1.渗透数学应用意识教育和数学审美教育,提高学习数学的兴趣.2.通过本节教学,培养我们合作交流意识,主动探索,敢于实践的良好学风.【教学重点】直棱柱、圆锥的侧面展开图分别是什么图形.【教学难点】直棱柱、圆锥的侧面展开图的相关计算.教学过程:一、情境导入,初步认识如图是一个长方体,大家数一下它有几个面,几条棱,上、下面与侧面有什么位置关系,竖着的棱与上、下面有何位置关系?二、思考探究,获取新知观察下列图中的立体图形,它们的形状有什么共同特点?1.直棱柱的有关概念在几何中,我们把上述这样的立体图形称为直棱柱,其中“棱”是指两个面的公共边.它具有以下特征:(1)有两个面互相平行,称它们为底面;(2)其余各个面都为矩形,称它们为侧面;(3)侧棱(指两个侧面的公共边)垂直于底面.根据底面图形的边数,我们分别称它们为直三棱柱、直四棱柱、直五棱柱、直六棱柱等.2.直棱柱的侧面展开图要求同学们把准备好的长方体纸盒的侧面沿一条侧棱剪开,试试看能否展开成一个平面,它是什么图形?结论:将直棱柱的侧面沿着一条侧棱剪开,可以展开成平面图形,称为直棱柱的侧面展开图.直棱柱的侧面展开图是一个矩形,这个矩形的长是直棱柱的底面周长,宽是直棱柱的侧棱长.例1教材P102例1【教学说明】直棱柱的侧面展开图的有关计算中,实际上是转换成直棱柱的底面周长和高的计算.3.圆锥的侧面展开图(1)圆锥的有关概念:如右图是一个圆锥,它是由一个底面和一个侧面围成的图形,它的底面是一个圆,连接顶点和底面圆心的线段叫做圆锥的高,圆锥顶点与底面圆周上上任意一点的连线都叫做圆锥的母线,母线的长度都相等.(2)把圆锥的侧面沿它的一条母线展开,它的侧面可以展开成一个平面图形,称为圆锥的侧面展开图.圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.例2教材P103例2三、运用新知,深化理解1.下面的图形中,是三棱柱的侧面展开图的是()2.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()3.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A.1B.34C.12D.134.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是_______度.5.如果圆锥的母线长为5cm,底面半径为3cm,那么圆锥的全面积为_______.6.如图,已知圆锥的母线AB=6,底面半径r=2,求圆锥的侧面展开图的扇形圆心角.第6题图第7题图7.如图所示的是一个食品包装盒的平面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).【教学说明】教师引导学生当堂完成,帮助学生认识直棱柱,扇形的侧面展开图及其公式的理解.【答案】1.A2.C3.C4.1205.24πcm26.解:设圆心角为n°,则有2πr=•AB∴4π=×6,∴n=120,扇形的圆心角α=120°7.(1)这个多面体是直六棱柱(2)S侧=6abS全面积=6ab+3b2四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:(1)直棱柱的侧面展开图是矩形,其面积=直棱柱的底面周长×直棱柱的高.(2)圆锥侧面积公式:S侧=πrl(r为底面圆半径,l为母线长)(3)圆锥全面积公式:S全=πrl+πr2(r为底面圆半径,l为母线长)课堂作业:1.教材P104第1、2、3题.2.完成同步练习册本课时的练习.教学反思:本节课首先让同学们认识直棱柱的有关概念及其棱柱的侧面展开图,接着学习了圆锥的有关概念及其侧面展开图,通过例题和练习初步掌握了直棱柱和圆锥的侧面展开图的有关计算,完成了从立体到平面的转化,增强了同学们学习的成就感.课题:3.3三视图(一)一、教学目标1、会从投影的角度理解视图的概念2、会画简单几何体的三视图3、通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。二、教学重、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图难点:对三视图概念理解的升华及正确画出三棱柱的三视图三、教学过程(一)创设情境,引入新课这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功