2018年最新九年级中考数学总复习教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12018年初三中考数学总复习教案第周星期第课时总课时章节第一章课题实数的有关概念课型复习课教法讲练结合教学目标(知识、能力、教育)1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。教学重点有理数、无理数、实数、非负数概念;相反数、倒数、数的绝对值概念;教学难点实数的分类,绝对值的意义,非负数的意义。教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.实数的有关概念(1)有理数:和统称为有理数。(2)有理数分类①按定义分:②按符号分:有理数()()0()()()();有理数()()()0()()()(3)相反数:只有不同的两个数互为相反数。若a、b互为相反数,则。(4)数轴:规定了、和的直线叫做数轴。(5)倒数:乘积的两个数互为倒数。若a(a≠0)的倒数为1a.则。(6)绝对值:(7)无理数:小数叫做无理数。2(8)实数:和统称为实数。(9)实数和的点一一对应。2.实数的分类:实数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a10,n是整数)(2)近似数是指根据精确度取其接近准确数的值。取近似数的原则是“四舍五入”。(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。(二):【课前练习】1.|-22|的值是()A.-2B.2C.4D.-42.下列说法不正确的是()A.没有最大的有理数B.没有最小的有理数C.有最大的负数D.有绝对值最小的有理数3.在00222sin45090.2020020002273、、、、、、这七个数中,无理数有()A.1个;B.2个;C.3个;D.4个4.下列命题中正确的是()A.有限小数是有理数B.数轴上的点与有理数一一对应C.无限小数是无理数D.数轴上的点与实数一一对应5.近似数0.030万精确到位,有个有效数字,用科学记数法表示为万二:【经典考题剖析】1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:解:(1)如图所示:(2)300-(-200)=500(m);或|-200-300|=500(m);或300+|200|=500(m).答:青少宫与商场之间的距离是500m。2.下列各数中:-1,0,169,2,1.1010016.0,,12,45cos,-60cos,722,2,722.有理数集合{…};正数集合{…};整数集合{…};自然数集合{…};()()()()()()()()()()()()零3分数集合{…};无理数集合{…};绝对值最小的数的集合{…};3.已知(x-2)2+|y-4|+6z=0,求xyz的值.解:48点拨:一个数的偶数次方、绝对值,非负数的算术平方根均为非负数,若几个非负数的和为零,则这几个非负数均为零.4.已知a与b互为相反数,c、d互为倒数,m的绝对值是2求32122()2()mmabcdm的值5.a、b在数轴上的位置如图所示,且a>b,化简aabba三:【课后训练】2、一个数的倒数的相反数是115,则这个数是()A.65B.56C.65D.-563、一个数的绝对值等于这个数的相反数,这样的数是()A.非负数B.非正数C.负数D.正数4、数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是2”,这种说明问题的方式体现的数学思想方法叫()A.代人法B.换元法C.数形结合D.分类讨论5、若a的相反数是最大的负整数,b是绝对值最小的数,则a+b=___________.6、已知xyyx,4,3xy,则3xy7、光年是天文学中的距离单位,1光年大约是9500000000000km,用科学计数法表示(保留三个有效数字)8、当a为何值时有:①23a;②20a;③23a9、已知a与b互为相反数,c、d互为倒数,x的绝对值是2的相反数的负倒数,y不能作除数,求20022001200012()2()abcdyx的值.0ba410、(1)阅读下面材料:点A、B在数轴上分别表示实数a,b,A、B两点之间的距离表示为|AB|,当A上两点中有一点在原点时,不妨设点A在原点,如图1-2-4所示,|AB|=|BO|=|b|=|a-b|;当A、B两点都不在原点时,①如图1-2-5所示,点A、B都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b-a=|a-b|;②如图1-2-6所示,点A、B都在原点的左边,|AB|=|BO|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图1-2-7所示,点A、B在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a-b|综上,数轴上A、B两点之间的距离|AB|=|a-b|(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.②数轴上表示x和-1的两点A和B之间的距离是________,如果|AB|=2,那么x为_________.③当代数式|x+1|+|x-2|=2取最小值时,相应的x的取值范围是_________.四:【课后小结】布置作业见学案教后记第周星期第课时总课时初三备课组章节第一章课题实数的运算课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。3.会用电子计算器进行四则运算。教学重点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。教学难点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。教学媒体学案教学过程一:【课前预习】(一):【知识梳理】51.有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则:①同号两数相加,取________的符号,并把__________②绝对值不相等的异号两数相加,取________________的符号,并用____________________。互为相反数的两个数相加得____。③一个数同0相加,__________________。(2)有理数减法法则:减去一个数,等于加上____________。(3)有理数乘法法则:①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,都得________。②几个不等于0的数相乘,积的符号由____________决定。当______________,积为负,当_____________,积为正。③几个数相乘,有一个因数为0,积就为__________.(4)有理数除法法则:①除以一个数,等于_______________________.__________不能作除数。②两数相除,同号_____,异号_____,并把_________。0除以任何一个____________________的数,都得0(5)幂的运算法则:正数的任何次幂都是___________;负数的__________是负数,负数的__________是正数(6)有理数混合运算法则:先算________,再算__________,最后算___________。如果有括号,就_______________________________。2.实数的运算顺序:在同一个算式里,先、,然后,最后.有括号时,先算里面,再算括号外。同级运算从左到右,按顺序进行。3.运算律(1)加法交换律:_____________。(2)加法结合律:____________。(3)乘法交换律:_____________。(4)乘法结合律:____________。(5)乘法分配律:_________________________。4.实数的大小比较(1)差值比较法:ab>0a>b,ab=0ab,ab<0a<b(2)商值比较法:若ab、为两正数,则ab>1a>b;1;aabbab<1a<b(3)绝对值比较法:若ab、为两负数,则a>ba<bababa;;<ba>b(4)两数平方法:如155137与5.三个重要的非负数:(二):【课前练习】1.下列说法中,正确的是()A.|m|与—m互为相反数B.2121与互为倒数6C.1998.8用科学计数法表示为1.9988×102D.0.4949用四舍五入法保留两个有效数字的近似值为0.502.在函数11yx中,自变量x的取值范围是()A.x>1B.x<1C.x≤1D.x≥13.按鍵顺序-1·2÷4=,结果是。4.16的平方根是______5.计算(1)32÷(-3)2+|-16|×(-6)+49;(2)2(32-23)-(32+23)二:【经典考题剖析】1.已知x、y是实数,234690,3,.xyyaxyxya若求实数的值2.请在下列6个实数中,计算有理数的和与无理数的积的差:24014,,2,,27,(1)233.比较大小:(1)35211,(2)155137,(3)103与与与3-224.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是;320的个位数字是;5.计算:(1)342221(2)(1)(12)()20.25413(2);(2)1002211()(2001tan30)(2)31621三:【课后训练】1.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,那么停靠站的位置应设在()A.A区;B.B区;C.C区;D.A、B两区之间2.根据国家税务总局发布的信息,2004年全国税收收入完成25718亿元,比上年增长25.7%,占2004年国内生产总值(GDP)的19%。根据以上信息,下列说法:①2003年全国税收收入约为25718×(1-25.7%)亿元;②2003年全国税收收入约为257181+25.7%亿元;③若按相同的增长率计算,预计2005年全国税收收入约为25718×(1+25.7%)亿元;④2004年国内生产总值(GDP)约为2571819%亿元。其中正确的有()A.①④;B.①③④;C.②③;D.②③④200m100mACB73.当0<x<1时,21,,xxx的大小顺序是()A.1x<x<2x;B.1x<2x<x;C.2x<x<1x;D.x<2x<1x4.设是大于1的实数,若221,,33aaa在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上自左至右的顺序是()A.C、B、A;B.B、C、A;C.A、B、C;D.C、A、B5.现规定一种新的运算“※”:a※b=ab,如3※2=32=9,则12※3()A.18;B.8;C.16;D.326

1 / 147
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功