初中数学分式计算题精选

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014寒假初中数学分式计算题精选菁优网©2010-2014菁优网2014寒假初中数学分式计算题精选一.选择题(共2小题)1.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.2.(2011•齐齐哈尔)分式方程=有增根,则m的值为()A.0和3B.1C.1和﹣2D.3二.填空题(共15小题)3.计算的结果是_________.4.若,xy+yz+zx=kxyz,则实数k=_________5.已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b=_________.6.计算(x+y)•=_________.7.化简,其结果是_________.菁优网©2010-2014菁优网8.化简:=_________.9.化简:=_________.10.化简:=_________.11.若分式方程:有增根,则k=_________.12.方程的解是_________.菁优网©2010-2014菁优网13.已知关于x的方程只有整数解,则整数a的值为_________.14.若方程有增根x=5,则m=_________.15.若关于x的分式方程无解,则a=_________.16.已知方程的解为m,则经过点(m,0)的一次函数y=kx+3的解析式为_________.17.小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶,若设他上周三买了x袋牛奶,则根据题意列得方程为_________.三.解答题(共13小题)菁优网©2010-2014菁优网18.计算:19.化简:.20.A玉米试验田是边长为a米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B玉米试验田是边长为(a﹣1)米的正方形,两块试验田的玉米都收获了500千克.(1)哪种玉米的单位面积产量高?21.化简:=_________.22.化简:.23.计算:.菁优网©2010-2014菁优网24.计算.25.解方程:.26.解方程:27.解方程:=0.28.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.菁优网©2010-2014菁优网29.解方程:(1)(2).30.解方程:(1)﹣=1;(2)﹣=0.菁优网©2010-2014菁优网2014寒假初中数学分式计算题精选参考答案与试题解析一.选择题(共2小题)1.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.3415023专题:压轴题.分析:根据公共汽车的平均速度为x千米/时,得出出租车的平均速度为(x+20)千米/时,再利用回来时路上所花时间比去时节省了,得出分式方程即可.解答:解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为(x+20)千米/时,根据回来时路上所花时间比去时节省了,得出回来时所用时间为:×,根据题意得出:=×,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,本题的关键是把握题意,利用回来时路上所花时间比去时节省了,得出方程是解题关键.2.(2011•齐齐哈尔)分式方程=有增根,则m的值为()A.0和3B.1C.1和﹣2D.3考点:分式方程的增根;解一元一次方程.3415023专题:计算题.分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解答:解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0时,分式方程变形为﹣1=0,此时分式无解,与x=﹣2矛盾,故m=0舍去,菁优网©2010-2014菁优网即m的值是3,故选D.点评:本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.二.填空题(共15小题)3.计算的结果是.考点:分式的混合运算.3415023专题:计算题.分析:根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2﹣1分解因式,约分即可得到化简结果.解答:解:=÷(﹣)=•=故答案为:点评:此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.4.若,xy+yz+zx=kxyz,则实数k=3考点:分式的混合运算.3415023专题:计算题.分析:分别将去分母,然后将所得两式相加,求出yz+xz+xy=3xyz,再将xy+yz+zx=kxyz代入即可求出k的值.也可用两式相加求出xyz的倒数之和,再求解会更简单.解答:解:若,则++==5,yz+2xz+3xy=5xyz;①++==7,3yz+2xz+xy=7xyz;②①+②得,4yz+4xz+4xy=5xyz+7xyz,4(yz+xz+xy)=12xyz,∴yz+xz+xy=3xyz∵xy+yz+zx=kxyz,∴k=3.菁优网©2010-2014菁优网故答案为:3.点评:此题主要考查学生对分式的混合运算的理解和掌握,解答此题的关键是先求出yz+xz+xy=3xyz.5.(2003•武汉)已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b=109.考点:分式的混合运算.3415023专题:规律型.分析:易得分子与前面的整数相同,分母=分子2﹣1.解答:解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109.点评:此题的关键是找到所求字母相应的规律.6.(1998•河北)计算(x+y)•=x+y.考点:分式的混合运算.3415023专题:计算题.分析:把第一个分式的分母先进行因式分解,再算乘法化简,再算加法即可.解答:解:原式=.点评:此题要注意运算顺序:先算乘法,再算加法;也要注意y﹣x=﹣(x﹣y)的变形.7.(2011•包头)化简,其结果是.考点:分式的混合运算.3415023分析:运用平方差公式、平方公式分别将分式分解因式,将分式除法转换成乘法,再约分化简,通分合并同类项得出最简值.解答:解:原式=••(a+2)+=+===.故答案为:点评:本题主要考查分式的混合运算,其中涉及平方差公式、平方公式、约分、通分和合并同类项等知识点.菁优网©2010-2014菁优网8.(2010•昆明)化简:=.考点:分式的混合运算.3415023专题:计算题.分析:先把括号里的式子通分,然后把除法运算转化成乘法运算,最后进行约分.解答:解:原式=×=.点评:本题主要考查分式的混合运算,注意运算顺序.9.(2009•成都)化简:=.考点:分式的混合运算.3415023专题:计算题.分析:把第二个分式的分子分母先因式分解,再把除法统一成乘法化简,最后算减法.解答:解:=1﹣=1﹣==.点评:此题运算顺序:先除后减,用到了分解因式、约分、合并同类项等知识点.10.(2008•包头)化简:=.考点:分式的混合运算.3415023专题:计算题.分析:能因式分解的分子或分母要先因式分解,先算小括号里的,再算除法.解答:解:原式=[﹣]÷=÷=×,故答案为.点评:此题主要考查分式的化简、约分.对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特活应变,注意方法.11.(2012•攀枝花)若分式方程:有增根,则k=1.考点:分式方程的增根.3415023菁优网©2010-2014菁优网专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.12.(2012•太原二模)方程的解是x=2.考点:解分式方程.3415023分析:首先分时两边同时乘以x﹣3去分母,再去括号、移项、合并同类项、把x的系数化为1,可以算出x的值,然后要进行检验.解答:解:,去分母得:1+2(x﹣3)=﹣(x﹣1),去括号得:1+2x﹣6=﹣x+1,移项得:2x+x=1﹣1+6,合并同类项得:3x=6,把x的系数化为1得:x=2,检验:把x=2代入最简公分母x﹣3≠0,则x=2是分式方程的解,故答案为:x=2.点评:此题主要考查了分式方程的解法,关键是掌握(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.13.(2012•合川区模拟)已知关于x的方程只有整数解,则整数a的值为﹣2,0或4.考点:分式方程的解.3415023分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.解答:解:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,菁优网©2010-2014菁优网解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣5=﹣7,检验,将x=﹣7代入(x﹣1)(x+2)=40≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.故答案为:﹣2,0或4.点评:此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.14.若方程有增根x=5,则m=﹣5.考点:分式方程的增根.3415023专题:计算题.分析:由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘(x﹣5)化为整式方程,再把增根5代入求解即可.解答:解:方程两边都乘x﹣5,得x=2(x﹣5)﹣m,∵原方程有增根,∴最简公分母x﹣5=0,解得x=5,把x=5代入,得5=0﹣m,解得m=﹣5.故答案为:﹣5.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.若关于x的分式方程无解,则a=0.考点:分式方程的解.3415023专题:计

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功