上海交通大学硕士学位论文三维复杂金属塑性成形过程数值模拟中的网格质量研究姓名:董万鹏申请学位级别:硕士专业:材料加工工程指导教师:陈军20040101IDEFORMCDEFORM3DCIIResearchonMeshQualityTechnologiesof3DComplexMetalFormingProcessNumericalSimulationABSTRACTResearchonmeshqualitytechnologiesof3Dcomplexmetalformingprocessnumericalsimulationwilladvanceourcurrentcomputer-aideddesignmode,andleadusintoanewepochofdesignandmanufacturingmoreefficiently.ThisthesisstartsfromtheapplicationsofFEMbasednumericalsimulationtechnologyin3DcomplexmetalformingprocessandgivesabriefdiscussiononFEMessentialequations,variationalprinciple&stresscalculationmethods.KeytechnologiesofpreprocessorinFEMsystemdesignedfor3Dcomplexmetalformingprocessisinitiallyanalyzedanddiscussed.Thehexahedronelementischosentodiscritizatonforitsanti-aberrancefromalltheaspectsofFEMbasednumericalsimulationtechnologyin3Dcomplexmetalformingprocess.Asuggestionaboutcurrentresearchworkshouldbelaidontechnologieswhichhasbeenwelldevelopedandtestifiedonmeshqualitycontrolisbroughtforward.Inthisdissertation,anmeshqualitycontrolmethodbasedonaberrationenergyisalsoproposedwhichisinitiatedfromtheanalysisincludingmeshgenerationtechnology,meshrezoningandmeshoptimization.Ancloserelationaltechnology,statevariablesinterpolation,isinpointtoo.Afterdiscussingabouttheframeworkandtechnologiesofaberrationenergybasedmeshqualitycontrolsystem,ansystematicalanalysisoncharacters,modesofmeshqualitycontrolsystem,criterionsofrezoning&DEFORMsoftwareinteractionisputforward.WiththeaidofOOPlanguageC++,Anarithmetictothequestionofmeshqualitycontrolisdeveloped,whosekernelissearchingforanodeclosetothehomologizedoneinaperfectshapeofH8furthest.Therefore,control&adjustmentsofmeshqualitycometrue.AserialofDEFORMbasedFEMdatakeystonesiscontrivedinthispaper.Moreover,aberrationenergybasedmeshqualitycontroltechnologiesandcurrentcommercialsoftwaresystemisintegratedwithgreatcompactnessestoconstructaprototypemoduletoprovetheeffectivetyofpresentedmethodologies,andimprovethemeshqualityin3Dcomplexmetalformingnumericalsimulationpartlly.KEYWORDS:Metalforming,numericalsimulaiton,FEM,hexahedron,meshqualitycontrol,meshrezoning20041311.11.1.1[1~3]NetFormingCADCAMCAECAX1.1.21.1.2.1TQCIS2TQCIS(1)T-Time(2)Q-Quality(3)C-Cost(4)I-Innovation(5)S-Service60FEM1.1.2.2FEM3FEMBEMFDM1.1.2.3[1]FEMAIKBEFEM1-1GeometryBaseDatabaseKnowledgeBaseAISystemsCAXSystemsSolver1-1FEMFig.1-1TypicalFEMSystemFEM[3~5]MultipleActionForging1973LeeKobayashiFEMKim[6]Wu[7]1994Mori[8]Mezger[9]0.044JiaGunasekeraStrezlTiesler[9][9]TieslerWuKoenigLange[10~12][13]//[14]/[15]CADCAD8090FORGE2QFORMALPIDDEFORMABAQUSMARCMSC/AutoForgeFEMKruppPrestaAGPrototyping1.21.2.1[16]Courant1943St.Venant1960Turner,Clough19561960CloughFEM19631964Besseling,MeloshJonesRitz605Galerkin40%~50%5%50%~55%1-2Fig.1-2DiscritizatonDiscritizatonFiniteElementElementNode1-261-3[17]1-3Fig.1-3CommenElementType(1)(2)(3)(4)(5)7(6)ShapeFunction(1)(2)1.2.2LagrangianEulerian-1.2.2.1DEFORM-2DDEFORM-3DANSYSLagrangianFormulation[4,18-20]LagrangeEulerLagrangeXXt),(tXxx=(11.a)⎪⎭⎪⎬⎫===),,,(),,,(),,,(321333212232111tXXXxxtXXXxxtXXXxx(11.b)tXk,Lagrange321XXOXLagrange8XXttXt11Lagrange[1][21-23]Lagrange[1,23]LagrangeDEFORM-3DFORGE-3[23]207[24-26][24]0[25]--9[26]Jaccobi1.2.2.2Eulerian[27-29]Euler[27,30-33]xX),(txXX=(12.a)⎪⎭⎪⎬⎫===),,(),,(),,(321333212232111xxxXXxxxXXxxxXX12.btxk,Euler321xxoxEulerxxttxt12EulerEulerianFormulationXxtxtTLFULF),(tXxx=[29][34]Abo-Elkhier[35]Derbalian[31]ULF10Oden[36]t[37-39]MSC/SuperForge1.2.2.3-ALE-ALEArbitraryLagrangian-EulerianLagrangianEulerianALELagrangian-EulerianALEALEALEEulerianALELagrangianEulerianALE1-11-1LagrangianEulerianALEChart1-1ComparisonaboutdifferenttypeofFEMLagrangianEulerianALELagrangianEulerianALEALE[40-42]-ALE[43-45]11ALEALE1.2.3(1)(2)(3)(4)(5)CAD/CAMCAECAE(6)(7)(8)(9)FEMFEM1.31.3.1[46-53]0121.3.2(1)N.A.Calvo[46]Jacobian(2)S.H.Luo[47]222CABCABSABC++=Δx(3)P.D.Zavattieri[48]Zavattieri3/82.1832PV=x(4)[49](5)[50](6)[51]∑=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-+-=njjrrrrrrrrrEleF1232221213232221)()()(CAD(7)[52]45135.30150(8)CAD[53]-ALEMeshQualityControlTechnologiesMQCT13(1)(2)(3)[54-59](4)ØØØØ1.41.4.1(1)14CAD(1)(2)(3)(4)(2)FEMFEM15[53]ALELagrangian(3)60FortranOOP[60],OOP(1)/(2)OOPOOP1.4.216FEMVonMisesDEFORMC172.12060S.KobayashiC.H.Lee19731/100~1/1000Kobayashi[1]Zienkiewicz1975MoriOskada2.22.2.1(1)(2)Levy-Mises(3)(4)(5)(6)()2.2.2(2-1)SVVSSvViSpPiVS182-1Fig.2-1BounderyconditionofrigidplasticLevy-MisesijijGsge∂∂=&(21)()ijijGGes=(22))]([ijijFesgg=(23)FF0F=0G=F(2-1):)(ijijFsge∂∂=&(24)VonMises02=-′KJ(25)2J′KY3YK=(26):Y=s()Ys():0=ije&:19ijijssee′=&&23(27)ijijeess&&32=′(28)se&ijijJsss′′=′=2332(29)ijijeee23=&(210)Levy-Mises0,=iijs(211))(21,,ijjiijuu+=e&(212)0==kkVee&&(213)(2-8)((2-11)(2-12)SFijijFn=s(214)jnSuiiuu=(215)2.320[1]2.3.1Markov:*iju*ije&0=Mpdiu∫∫-=VSSiiVijijsMFduFdeesp&&32(216)[1]2.3.2Lagrangian)(ijijaa=iml(217)imije&217*iju*ije&imije&2.3.3imije&212215213l(218)()∫∫∫∫∫--+⎥⎦⎤⎢⎣⎡+---=*VSSiiiVijijVVijjiijijVSSiiVijijsuFduudduuduFd)(2132,,mdeleaeesp&&&&∫∫∫+-=*VVijijVSSiiVijijsdduFdFeldeesp&&&32121im218im2.4ms2.4.1(219)liulms2.4.2K(105106)(220)iuVe&(2-20)()iuK2piuMark