1数码管显示电子时钟设计一.功能要求1.数字电子时钟最主要是LED数码管显示功能,以24小时为一个周期,显示时间时、分、秒。2.具有校时功能,可以对时、进行单独校对,使其校正到标准时间。二.方案论证1.数字时钟方案数字时钟是本设计的最主要的部分。根据需要,可利用两种方案实现。方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。方案二:本方案完全用软件实现数字时钟。原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。该方案具有硬件电路简单的特点。但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。2.数码管显示方案方案一:静态显示。所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。该方式每一位都需要一个8位输出口控制。静态显示时较小的电流能获得较高的亮度,且字符不闪烁。但当所显示的位数较多时,静态显示所需的I/O口太多,2造成了资源的浪费。方案二:动态显示。所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。利用人的视觉暂留功能可以看到整个显示,但必须保证扫描速度足够快,字符才不闪烁。显示器的亮度既与导通电流有关,也于点亮时间与间隔时间的比例有关。调整参数可以实现较高稳定度的显示。动态显示节省了I/O口,降低了能耗。从节省I/O口和降低能耗出发,本设计采用方案二。3.计时方案利用AT89S51单片机内部的定时/计数器进行中断时,配合软件延时实现时、分、秒的计时。该方案节省硬件成本,且能使读者在定时/计数器的使用、中断及程序设计方面得到锻炼与提高,对单片机的指令系统能有更深入的了解,从而对学好单片机技术这门课程起到一定的作用。4.控制方案AT89S51的P0口和P2口外接由八个LED数码管(LED8~LED1)构成的显示器,用P0口作LED的段码输出口,P2口作八个LED数码管的位控输出线,P1口外接四个按键A、B、C构成键盘电路。AT89S51是一种低功耗,高性能的CMOS8位微型计算机。它带有8KFlash可编程和擦除的只读存储器(EPROM),该器件采用ATMEL的高密度非易失性存储器技术制造,与工业上标准的80C51和80C52的指令系统及引脚兼容,片内Flash集成在一个芯片上,可用与解决复杂的问题,且成本较低。简易电子钟的功能不复杂,采用其现有的I/O便可完成,所以本设计中采用此的设计方案。三.系统硬件电路的设计根据以上的电子时钟的设计要求可以分为以下的几个硬件电路模块:单片机模块、数码显示模块与按键模块,模块之间的关系图如下面得方框电路图1所示3图1硬件电路方框图1.单片机模块设计1.1芯片分析AT89C51单片机引脚图如下:图2AT89C51引脚图MCS-51单片机是标准的40引脚双列直插式集成电路芯片,其各引脚功能如下:VCC:+5V电源。VSS:接地。4RST:复位信号。当输入的复位信号延续两个机器周期以上的高电平时即为有效,用完成单片机的复位初始化操作。XTAL1和XTAL2:外接晶体引线端。当使用芯片内部时钟时,此二引线端用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。P0口:P0口为一个8位漏极开路双向I/O口,当作输出口使用时,必须接上拉电阻才能有高电平输出;当作输入口使用时,必须先向电路中的锁存器写入“1”,使FET截止,以避免锁存器为“0”状态时对引脚读入的干扰。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,它不再需要多路转接电路MUX;因此它作为输出口使用时,无需再外接上拉电阻,当作为输入口使用时,同样也需先向其锁存器写“1”,使输出驱动电路的FET截止。P2口:P2口电路比P1口电路多了一个多路转接电路MUX,这又正好与P0口一样。P2口可以作为通用的I/O口使用,这时多路转接电路开关倒向锁丰存器Q端。P3口:P3口特点在于,为适应引脚信号第二功能的需要,增加了第二功能控制逻辑。当作为I/O口使用时,第二功能信号引线应保持高电平,与非门开通,以维持从锁存器到输出端数据输出通路的畅通。当输出第二功能信号时,该位应应置“1”,使与非门对第二功能信号的输出是畅通的,从而实现第二功能信号的输出。MCS-51单片机共有4个双向的8位并行I/O端口(Port),分别记作P0-P3,共有32根口线,各口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。实际上P0-P3已被归入特殊功能寄存器之列。这四个口除了按字节寻址以外,还可以按位寻址。由于它们在结构上有一些差异,故各口的性质和功能有一些差异。P0口是双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。P1口是8位准双向I/O口,可驱动4个LS型负载。P2口是85位准双向I/O口,与地址总线(高8位)复用,可驱动4个LS型TTL负载。P3口是8位准双向I/O口,是双功能复用口,可驱动4个LS型TTL负载。P1口、P2口、P3口各I/O口线片内均有固定的上拉电阻,当这3个准双向I/O口做输入口使用时,要向该口先写“1”,另外准双向I/O口无高阻的“浮空”状态,故称为双向三态I/O口。时钟电路用于产生MCS-51单片机工作时所必需的时钟信号。MCS-51单片机本身就是一个复杂的同步时序电路,为保证同步工作方式的实现,MCS-51单片机应在唯一的时钟信号控制下,严格地按时序执行进行工作,而时序所研究的是指令执行中各个信号的关系。在执行指令时,CPU首先要到程序存储器中取出需要执行的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。CPU发出的时序信号有两类,一类用于片内对各个功能部件的控制,这列信号很多。另一类用于片外存储器或I/O端口的控制,这部分时序对于分析、设计硬件接口电路至关重要。这也是单片机应用系统设计者普遍关心的问题。1.2数码显示模块设计系统采用动态显示方式,用P0口来控制LED数码管的段控线,而用P2口来控制其位控线。动态显示通常都是采用动态扫描的方法进行显示,即循环点亮每一个数码管,这样虽然在任何时刻都只有一位数码管被点亮,但由于人眼存在视觉残留效应,只要每位数码管间隔时间足够短,就可以给人以同时显示的感觉。6图3数码显示电路1.3按键模块下图为按键模块电路原理图,A为复位键,B为时钟调控键,C为分钟调控键。图4按键模块电路原理图7四.系统程序的设计软件设计分析显示的效果为动态显示,利用CPU控制数码管显示的选通和停止,通过定时器中断不断扫描,从而实现数据的动态显示。在编程上,首先进行了初始化,定义程序的的入口地址以及中断的入口地址,在主程序开始定义了一组固定单元用来储存计数的时.分.秒,在显示初值之后,进入主循环。在主程序中,对不同的按键进行扫描,实现秒表,时间调整,复位清零等功能,系统总流程图如下图5:图5系统总体流程图8五.调试及性能分析电子时钟主要的设计要求是能够实现时钟的一般功能,以及包括时间的调整功能,这个基于单片机的电子时钟基本上实现了上述功能,能够通过时间调整电路对时间进行调整以及复位。下述为18:30:30的仿真图:首先确保各器件的完好性,其次检测各芯片的电源线和地线是否接触良好,然后焊接器件,接好电源用万用表检测各电源端、地端的状态是否正常。检查无误后插上AT89S51并烧写一简易的程序,观察电路是否能协同工作。最后烧写工作程序,根据显示现象调试程序直至成功。上电运行时,数码管开始显示00:00:00,时钟开始走时。程序的编写和调试是一个比较复杂的过程。由于对C语言知识的薄弱,所以在编译过程中总是有很多语法上的错误,但是在和同学一起讨论研究后,程序是编写出来了,但结合到硬件调试中又出现各种问题。在调试过程中出现了很多问题,在第一次把程序烧到单片机里,通电运行时,虽然控制时、分、秒的按钮能够对数码管显示进行调整,但是数码管全亮,不能通过按键变化显示,更改程序中的问题,但是调时设置又没有用了。经过检查及修改,终于完成了所做的设计,不容易啊。六.控制源程序清单#includereg51.h#includeabsacc.h9#defineucharunsignedchar#defineuintunsignedint/*七段共阴管显示定义*/ucharcodedispcode[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0xBF,0x86,0xCB,0xCF,0xEF,0xED,0xFD,0x87,0xFF,0xDF};/*定义并初始化变量*/ucharseconde=0;ucharminite=0;ucharhour=12;ucharmstcnt=0;sbitP1_0=P1^0;//second调整定义sbitP1_1=P1^1;//minite调整定义sbitP1_2=P1^2;//hour调整定义/*函数声明*/voiddelay(uchark);//延时子程序voidtime_pro();//时间处理子程序voiddisplay();//显示子程序voidkeyscan();//键盘扫描子程序/*****************************//*延时子程序*//****************************/voiddelay(uchark){ucharj;while((k--)!=0){for(j=0;j125;j++){;}}}/**************************//*时间处理子程序*//**************************/voidtime_pro(void){if(seconde==60)//秒钟设为60进制{seconde=0;minite++;if(minite==60)//分钟设为60进制{minite=0;hour++;if(hour==24)//时钟设为24进制{hour=0;}}10}}/*****************************//*显示子程序*//*****************************/voiddisplay(void){P2=0xfe;P0=dispcode[hour/10];//显示小时的十位delay(4);P2=0xfd;P0=(dispcode[(hour%10)])|0X80;//显示小时的个位delay(4);P2=0xfb;P0=dispcode[minite/10];//显示分的十位delay(4);P2=0xf7;P0=(dispcode[minite%10])|0X80;//显示分的个位delay(4);P2=0xef;P0=dispcode[seconde/10];//显示秒的十位delay(4);P2=0xdf;P0=dispcode[seconde%10];//显示秒的个位delay(4);}/*******************************//*键盘扫描子程序*//*******************************/voidkeyscan(void){if(P1_0==0)//按键