本章首先介绍了隧道工程的相关概念;然后介绍了ANSYS的生死单元及DP材料模型;最后用2个实例分别详细描述了用ANYS实现隧道结构设计和隧道施工模拟的全过程。内容提要第3章ANSYS隧道工程中的应用实例分析本章重点隧道工程概述隧道施工ANSYS模拟的实现ANSYS隧道结构实例分析ANSYS隧道开挖模拟实例分析本章典型效果图第3章ANSYS隧道工程中的应用实例分析3.1隧道工程相关概念3.1.1隧道工程设计模型为达到各种不同的使用目的,在山体或地面下修建的建筑物,统称为“地下工程”。在地下工程中,用以保持地下空间作为运输孔道,称之为“隧道”。由于地层开挖后容易变形、塌落或是有水涌入,所以在除了在极为稳固地层中且没有地下水的地方以外,大都要在坑道的周围修建支护结构,称之为“衬砌”。隧道工程建筑物是埋于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同作用。隧道工程所处的环境条件与地面工程是全然不同的,但长期以来都沿用适应地面的工程理论和方法来解决地下工程中所遇到的各类问题,因而常常不能正确地阐明地下工程中出现的各种力学现象和过程,是地下工程长期处于“经验设计”和“经验施工”的局面。这种局面与迅速发展的地下工程现实极不相称,促使人们努力寻找新的理论和方法来解决地下工程遇到的各种问题。地下工程的设计理论和方法经历了一个相当长的发展过程。在20世纪20年代以前,地下工程支护理论主要有古典的压力理论和散体压力理论,以砖、石头材料作为衬砌,采用木支撑或竹支撑的分部开挖方法进行施工。此时,只是将衬砌作为受力结构,围岩是看作载荷作用在衬砌结构上,这种设计理论过于保守,设计出的衬砌厚度偏大。20世纪50年代以来,岩石力学开始成为一门独立的学科,围岩弹性、弹塑性和粘弹性解答逐步出现。土力学的发展促使松散地层围岩稳定和围岩压力理论的发展,而岩石力学的发展则促使围岩压力和地下工程支护结构理论的进一步的飞跃。同时,锚杆和喷射混凝土的作为初期支护得到广泛应用。这种柔性支护允许开挖后的围岩有一定的变形,使围岩能够发挥其稳定性,从而可以大大地减小衬砌厚度。国际隧道学会认为,目前采用的隧道设计模型主要有以下几种:以工程类比为主的经验设计方法。以现场测试和实验室试验为主的实用设计方法(如现场和实验室的岩土力学试验、以洞周围测量值为基础的收敛—约束法以及实验室模型试验等)。作用—反作用设计模型,即目前隧道设计常用的载荷—结构模型,包括弹性地基梁、弹性地基圆环等。连续介质模型,包括解析法(封闭解和近似解)和数值法(以FEM为主)。国际隧道学会于1978年成立了隧道结构设计模型研究小组,收集和汇总了各会员国目前采用的隧道工程设计模型,详见表3-1。第3章ANSYS在隧道工程中的应用分析表3-1隧道工程设计模型国家盾构法NATM法矿山法明挖法中国弹性地基圆环、经验法初期支护:FEM、收敛—约束法二次支护:弹性地基圆环初期支护:经验法二次支护:作用与发作用法大型洞室:FEM结构力学弯距分配法澳大利亚弹性支撑全圆环法、MuirWood法或假定隧道变形法初期支护:Proctor-White法二次支护:弹性支撑全圆环法、MuirWood法或假定隧道变形法初期支护:Proctor-White法二次支护:弹性支撑全圆环法、MuirWood法或假定隧道变形法结构力学弯距分配法奥地利弹性地基圆环弹性地基圆环、FEM、收敛—约束法经验法弹性地基框架日本局部支撑弹性地基圆环局部支撑弹性地基圆环、经验法加测试、FEM弹性地基框架、FEM、特征曲线法弹性地基框架、FEM德国埋深2D:顶部无支撑的弹性地基圆环埋深3D:全周支撑的弹性地基圆环或FEM埋深2D:顶部无支撑的弹性地基圆环埋深3D:全周支撑的弹性地基圆环或FEM全周支撑的弹性地基圆环或FEM弹性地基框架法国弹性地基圆环或FEMFEM、经验法、作用与反作用法连续介质模型、收敛-约束法、经验法—英国弹性地基圆环法、MuirWood法收敛-约束法、经验法FEM、收敛-约束法、经验法矩形框架瑞士—作用与反作用法FEM、收敛-约束法、经验法—美国弹性地基圆环弹性地基圆环、FEM、Proctor-White法、经验法—弹性地基连续框架比利时Schulze-Duddek法——钢架结构第3章ANSYS隧道工程中的应用实例分析注:表中NATM指新奥法,是NEWAUSTRIATUNNELINGMETHOD的简称。FEM指有限元法,是FINITEELEMENTMETHOD的简称。各种隧道设计模型各有其适合的场合,也各有自身的局限性。由于隧道结构设计受到各种复杂因素的影响,因此在世界各国隧道设计中,主要采用以工程类比为主的经验设计法,特别是在支护结构预设计中应用最多。即使内力分析采用比较严格的理论,其计算结果往往也需要用经验类比加以判断和补充。如常见公路或铁路隧道,都是选取以工程类比为主的经验设计法来进行结构参数的拟定,可见公路或铁路隧道设计规范。但是,采用此法设计的隧道结构是不安全的和不经济的。因为设计的隧道的地质勘探不可能做到对每一段都进行钻探,因而会出现地质条件错误判断现象,有可能实际围岩类别比设计采用的要低,这样按高类别围岩设计出的隧道结构是不安全的。相反,若实际围岩类别比设计采用高,则采用的设计是不经济的。随着NATM的出现,以测试为主的实用设计法为现场人员所欢迎,因为它能提供直觉的材料,以更准确地估计地层和地下结构的稳定性和安全程度。其中应用最多的是收敛—约束法,其主要思想是:一边施工,一边进行洞周围量测,随着位移变化情况,来选用合适的隧道支护参数,这样就可以按实际地质条件来设计隧道支护,避免了工程类比既不安全又不经济的缺点。收敛—约束法将支护和围岩视为一体,作为共同承载的隧道结构体系,通过调整支护来控制变形,从而最大限度地发挥了围岩自身的承载能力。采用此模型,有些问题可以使用解析法求解,但大部分问题因数学上的困难必须依赖数值方法。理论计算法可用于进行无经验可循的新型隧道工程设计,因此基于作用与反作用模型和连续介质模型的计算理论成为一种特定的计算手段日益为人们重视。由于隧道工程所处环境的复杂性,以及各种隧道设计模型各有优缺点,因此工程技术人员在设计隧道结构时,往往需要同时进行多种设计模型的比较,以作出既经济又安全的合理设计。从各国地下结构设计实践看,目前隧道设计主要采用两种模型。第一种模型即为传统的结构力学模型。它是将支护结构和围岩分开来考虑,支护结构是承载主体,围岩作为载荷的来源和支护结构的弹性支撑,故又称为荷载—结构模型。采用这种模型时,认为隧道支护结构与围岩的相互作用是通过弹性支撑对结构施加约束来体现的,而围岩饿承载能力则在确定围岩压力与弹性支撑的约束能力时间接地考虑。围岩承载能力越高,它给予支护结构的压力越小,弹性支撑的约束支护结构变形的抗力越大。这种模型主要适用于围岩因过分变形而发生松弛和崩塌,支护结构主动承担围岩“松动”压力情形。利用这种模型进行隧道设计关键问题是如何确定作用在支护结构上的主动荷载,其中最重要的是围岩松动压力和弹性支撑作用于支护结构的弹性抗力。一旦解决了这两个问题,就可以运用结构力学方法求出朝静定体系的内力和位移。因为这种模型概念清晰,计算简便,便于被工程师接受,所以至今很通用,特别是在模筑衬砌。属于这种模型的计算方法有弹性连续框架(含拱形)法、假定抗力法和弹性地基梁(含曲梁和圆环)法等。当软弱地层对结构变形的约束能力较差时(或衬砌与地层间的空隙回填、灌浆不密实时),隧道结构内力计算常用弹性连续框架法,反之,采用假定抗力法或弹性地基法。第二种模型叫现代岩体力学模型。它将支护结构和围岩视为一体,作为共同承载的隧道结第3章ANSYS在隧道工程中的应用分析构体系,故又称为围岩—结构共同作用模型。这种模型中,围岩是直接的承载单元,支护结构只是用来约束和限制围岩的变形,这一点刚好与第一种模型相反。这种模型主要用于由于围岩变形而引起的压力,压力值必须通过支护结构与围岩共同作用而求得,这是反映当前现代支护结构原理的一种设计方法,需采用岩石力学方法进行计算。应当指出,支护体系不仅是指衬砌与喷层等结构物,而且还包括锚杆、钢筋及钢拱架等支护在内。围岩—结构共同作用模型是目前隧道结构体系设计中力求采用的或正在发展的模型,因为它符合当前施工技术水平,采用快速和超强的支护技术可以限制围岩的变形,从而阻止围岩松动压力的产生。这种模型还可以考虑各种几何形状、围岩特性和支护材料的非线性特性、开挖面空间效应所形成的三维状态以及地质中不连续面等。利用此模型进行隧道设计的关键问题是,如何确定围岩初始应力场和表示材料非线性特性的各种参数及其变化情况。一旦这些问题解决了,原则上任何场合都可用有限单元法求出围岩与支护结构的应力及位移状态。这种模型中只有一些特殊隧道可以用解析法或收敛—约束法图解,绝大部分隧道求解时因数学上的困难必须依赖数值方法,借助计算机来进行分析求解。3.1.2隧道结构的数值计算方法通常,隧道支护结构计算需要考虑地层和支护结构的共同作用,一般都是非线性的二维或三维问题,并且计算还与开挖方法、支护过程有关。对于这类复杂问题,必须采用数值方法。目前用于隧道开挖、支护过程的数值方法有:有限元法、边界元法、有限元—边界元耦合法。其中有限元法是一种发展最快的数值方法,已经成为分析隧道及地下工程围岩稳定和支护结构强度计算的有力工具。有限元法可以考虑岩土介质的非均匀性、各向异性、非连续性以及几何非线性等,适用于各种实际的边界条件。但该法需要将整个结构系统离散化,进行相应的插值计算,导致数据量大,精度相对底。大型通用有限元软件ANSYS就可用于隧道结构的数值计算,还可以实现隧道开挖与支护以及连续开挖的模拟。边界元法在一定程度上改进了有限元法精度,它的基本未知量只在所关心问题的边界上,如在隧道计算时,只要对分析对象的边界作离散处理,而外围的无限域则视为无边界。但该法要求分析区域的几何、物理必须是连续的。有限元—边界元耦合法则使采用两种方法的长处,从而可取得良好的效果。如计算隧道结构,对主要区域(隧道周围区域)采用有限元法,对于隧道外部区域可按均质、线弹性模拟,这样计算出来的结果精度一般较高。3.1.3隧道荷载参照相关隧道设计规范,隧道设计主要考虑荷载包括永久荷载、可变荷载和偶然荷载,详见表3-2。其中最重要的是围岩的松动压力,支护结构的自重可按预先拟定的结构尺寸和材料重度计算确定。在含水地层中,静水压力可按最底水位考虑。在没有仰拱结构中,车辆荷载直接第3章ANSYS隧道工程中的应用实例分析传给地层。表3-2隧道荷载荷载分类荷载名称说明永久荷载结构自重恒载主要载荷结构附加恒载围岩压力土压力混凝土收缩和徐变的影响可变荷载车辆荷载活载车辆荷载引起的土压力冲击力公路活载附加荷载冻胀力灌浆力温差应力施工荷载偶然荷载落石冲击力附加荷载地震力特殊荷载3.2隧道施工过程ANSYS模拟的实现3.2.1单元生死3.2.1.1单元生死的定义如果模型中加入或删除材料,对应模型中的单元就存在或消失,把这种单元的存在与消失的情形定义为单元生死。单元的生死选项就用于在这种情况下杀死或重新激活所选择单元。单元生死功能主要用于开挖分析(如煤矿开挖和隧道开挖等)、建筑物施工过程(如近海架桥过程)、顺序组装(如分层计算机的组装)以及许多其他方面应用(如用户可以根据已知单元位置来方便地激活或杀死它们)。需要注意的是,ANSYS单元的生死功能只适用于ANSYS/Multiphysics,ANSYS/Mechanical和ANSYS/Structure产品。此外,并非所有ANSYS单元具有生死功能,具有此生死功能的单元见表3-1。第3章ANSYS在隧道工程中的应用分析表3-1ANSYS中具有生死功能的单元LINK1BEAM24SHELL57PLANE83SURF152SOLID185PLANE2PLANE25PIPE59SOLID87SURF153SOLID186BEAM3MATRIX27PIPE60SOLID90SURF154S