.小学五年级奥数教案课题一:长方形和正方形的周长和面积教学内容:长方形和正方形的周长和面积教学目标:1、知识目标:会利用转化及割补的方法求不规则图形的面积和周长。2、能力目标:培养学生的观察能力及逻辑思维能力。3、情感目标:渗透转化的数学思想,在转化的过程中要抓住“变”与“不变”。教学重点:将不规则图形转化为规则图求解教学难点:观察转化后的“变”与“不变”(形状、面积发生变化,但是周长不变)教学关键:画图观察教具准备:三角尺,两个相同的长方形。教学过程:(40分钟)一、复习导入(5分钟)1、我们已经学习过长方形、正方形的周长和面积,请你用字母表示长方形、正方形的周长和面积。2、看图:在练习本上写出周长和面积3、汇报。同时了解一下学生基础知识掌握如何。二、新授(探究1~3)(30分钟)(一)、学习探究活动1求ABEFGD的周长和面积。图形ABEFGD是由一个长方形ABCD和一个正方形CEFG拼成的。AB=10cmBE=10cmDG=4cm.1、黑板上画出图形。2、让学生默读几遍题,要求看图就能够说出题中的已知条件和问题。3、提问:看图说出题中的已知条件和问题。教师把文字部分擦除。(目的是让学生理解题意,为讲题打基础,同时也是培养学生良好的做题习惯)4、两个人互相说题中的已知条件和问题。5、自己试着解题,教师巡视,了解学生的做题方法及学生的水平。6、汇报同时讲解方法一:直接求:AB=DCCG=DC-DG=10-4=6cmBC=10-6=4cmAD=BC=4cmABEFGD周长=AB+BE+EF+GF+DG+AD=10+10+6+6+4+4=40cmABEFGD面积=ABCD面积+GCEF面积=10×4+6×6=76cm方法二:转化后求解GF=DG'=4cmDG=G'F=6cmABEG'是一个正方形所以:ABEFGD的周长就是ABEG'的周长=10×4=40cm(转化后周长没有发生变化,把复杂的图形转化为简单的图形)不规则图形ABEFGD转化为正方形ABEG'后面积却发生了变化:增加了长方形DGFG'的面积,因此求ABEFGD的面积要用正方形ABEG'的面积减去长方形DGFG'的面积。因此ABEFGD面积=ABEG'的面积-DGFG'的面积=10×10-4×6=76cm7、讲解后让学生把错误的改正过来,同时把黑板上的答案擦除,让学生看图再在练习本上做一遍此题,加深理解。8、置疑。(有不明白的地方、或者有其它看法的可以提出来)(二)、学习探究活动2求ABEFGD的周长和面积。两个相同的长方形,长9cm,宽5cm。.1、黑板上画出图形。同时用教具演示。2、让学生默读几遍题,要求看图就能够说出题中的已知条件和问题。3、提问:看图说出题中的已知条件和问题。教师把文字部分擦除。4、两个人互相说题中的已知条件和问题。5、自己试着解题,教师巡视,了解学生的做题方法及学生的水平。6、汇报同时讲解(因为有了前一道题的基础,所以本题重点让学生分析转化后什么没有变化,什么发生变化)7、还有其它的解法吗?因为是两个完全相同的长方形,因此有很多解法。如:方法三:9×5×2-5×5方法四:9×5+4×5(三)、学习探究活动3最小的正方形的面积是多少?图中有六个正方形,较小的正方形都是由较大的正方形的四边中点连接.而成。已知最大的正方形的边长是10厘米。那么最小的正方形的面积是多少平方厘米?1.黑板上画出图形。2.让学生默读几遍题,要求看图就能够说出题中的已知条件和问题。3.提问:看图说出题中的已知条件和问题。教师把文字部分擦除。4.两个人互相说题中的已知条件和问题。5.自己试着解题,教师巡视,了解学生的做题方法及学生的水平。6.对于这种题大部分学生会感觉到束手无策,因此老师要抓住此题的关键,先降低此题的难度。只画两个正方形先求黄色正方形的面积,做辅助线。学生可以轻易地求出黄色正方形的面积是蓝色正方形的面积的一半。从而找出规律:连接正方形的中点所组成的小正方形的面积是大正方形面积的一半。因此原题的面积可以迎刃而解:10×10÷2÷2÷2÷2÷2=3.125平方厘米6、置疑。三、练习(4分钟)P6--------2.四、总结(1分钟)本节课你学会了什么?掌握了怎么的解体方法?把你学会的技能跟老对说一说。课题二:分数问题教学过程:一、创设情境:你们知道古埃及的金字塔吗?它们是一些古老雄伟的建筑物,是古代埃及国王的坟墓。你能在金字塔里找出数学问题并解决吗?你会测量金字塔的高度吗?介绍:塞乐斯是古希腊第一位闻名世界的大数学家。他的家乡离埃及不太远,所以他常去埃及旅行。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。练习:一个时间里,一个身高人1米测6的人量了人民医院高楼的影长3米,自己的影长为1分米,求高楼的实际高度。刚才我们在建筑里面找到了数学问题并用所学知识解决的问题。其实动物中也存在数学问题,你能找到吗?二:资料共享:.动物中的数学“天才”蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半———即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。用数学的眼光去观察生活,你就会发现这个世界因为有了数学变得更加精彩!三、解决问题.有一位老人,他有三个儿子和十七匹马。他在临终前对他的儿子们说:我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。老人去世后,三兄弟看到了遗嘱。遗嘱上写着:我把十七匹马全都留给我的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。不许流血,不许杀马。你们必须遵从父亲的遗愿!这三个兄弟迷惑不解。尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。他们就去找智者。仔细研究老人的遗嘱可以发现,老人的遗嘱实际上包含三点要求:第一,把17匹马全部都分给三个儿子;第二,每给老大一半,就要给老二三分之一、给老三九分之一,所以实际上是要按照这样的比例进行分配,而不是只把17匹马的分给三个儿子;第三,不许让马流血。1、一个分配方案,只要满足上述条件,就是符合遗嘱要求的方案。老人自己家有17匹马,加上一匹,一共十八匹马。按18匹马分给三个兄弟,三个兄弟所得的马的匹数当然符合的比例(符合上述第二条要求),而三个兄弟分别得到的9匹、6匹和2匹之和,恰好是17匹(符合上述第一条要求),又没让马流血(符合上述第三条要求),所以这个办法是完全符合老人遗嘱要求的。.恰好有9+6+2=17。可见,分给长子9匹、次子6匹、幼子2匹,既恰好把17匹马全都分完,又符合的比例,双没有让马流血,所以完全合乎老人遗嘱的要求。2、假如先不考虑老人关于不许杀马的要求,而硬把17匹马的一半、三分之一和九分之一分别分给三兄弟,完成第一次分配;第一次分配后剩下一部分马,再把剩下的这部分马的一半、三分之一和九分之一分别分给三兄弟,完成第二次分配;第二次分配后还剩下一部分,再把剩下的这部分马的一半、三分之一和九分之一分别分给三兄弟,完成第三次分配。照此办理,任何有限次分配总不能把17匹马全部分完。而无穷无尽地分下去,三个兄弟所分得的马各是一个无穷级数的和,或者说各是一个无穷递缩等比数列各项的和。这三个无穷递缩等比数列的首项分别是,公比都是按照无穷递缩等比数列的求和公式可以算出,三兄弟每人分得的马分别为:先进行分析和计算,不要认真地动刀进行一次又一次的分配,等到算出了三兄弟每人经过无穷无尽、一次又一次一次的分配后所分别能够得到的马的总匹数后再统一一次性地分配,就既用不着杀马,又恰好把17匹马全部按老人的遗嘱所规定的比例分完,不拆不扣地执行了老人的遗嘱。3、张景中老师所著《数学传奇》一书指出,像上面这样改变一下数字的,一共可以有七种变化,就是说,这个故事可以有七种讲法。如果在每一种讲法中把马的总匹数记为n,把三兄弟分得的比例记为则可以列表如下:.讲法①②③④⑤⑥⑦X2222222Y3333444Z78912568n4123171119117上述七种讲法都是关于可以用借来一匹马,按规定的比例分配后恰好剩下一匹,再还回去的办法来解的.按本节前面所述,这些讲法都是合理的。四、扑克牌游戏把一幅扑克牌洗了几遍,从这54张牌中数出27张。我看着他一张一张地数。第一张是个红桃3,第二张是个方块4,第三张是个梅花Q,再往下我就记不住了。反正他一共数出了27张,一张挨一张地摞成了一摞,然后扣过来放在了桌子上。他手里拿着剩下的27张牌,让我从中随便抽出三张。如果抽到大王或小王,他就让我重新抽一张。他把我随意抽出的三张牌并排摆在桌子上,从每一张牌的点数开始,在它下面放上他手中的牌,放一张加一点,一直数到十三点为止。于是他在我从他手中抽出的三张牌下面各放了一串牌。当时我随意抽到的三张牌分别是黑桃9、方块8和红桃J。在黑桃9下面放了4张牌、在方块8下面放了5张牌、在红桃J.(算11点)下面放了两张牌,就都到13点了。然后,他把手中剩下的牌全都摞在了他先数出的那半副扑克上。这时,他让我把我抽出的那三张牌的点数加起来,问我总和是多少。我说9+8+11=28。他问我:那么,桌子上这摞扑克牌中从上往下数的第28张是什么牌,你知道吗?我说:不知道。他说:我知道,你信不信?不信咱们就数到第28张,看看我说的对不对。于是我按住那摞牌,让他说第28张是什么牌。他说:是大王。我从上往下拿掉了27张牌,然后把下面的那张一翻,果然是大王!我和后来过来围观的同学们都很惊奇。后来又作了几次,每次都先数出27张摞成一摞扣在旁边,然后从剩下的27张中随意抽出三张,从每张的点数开始往下排,排到13点为止,再把剩下的牌也扣到先数出的那半副牌上。如果由于抽出的三张牌的点数太小,手中的牌不够用,他就从先数的那一摞上取,还是排到13点为止。由于每次抽出的三张牌的点数完全是偶然的,所以这三张牌的点数之和予先谁也不知道,可是他每次都能准确地说出那摞牌中从上往下数序号等于抽出的三张牌的点数之和的那张牌是什么。当然并不是每次都是大王,作了好几遍都准确无误,有的同学说:真神了!后来我照着他的作法自己又作了几遍,边作边思考,终于发现了这个游戏的奥妙:.设我从他手中随意抽出的三张牌的点数分别为、、,在点下面每放一张算增加一点,直放到13点为止,则放到13点时这一列共有张牌,同理,另两列分别有及张牌。这三列总共有他从全副扑克中数出27张牌扣到旁边之后,手中还剩27张牌。手中的27张牌中又有张被用来摆了三列,于是,摆完三列后手中还剩张牌。也就是说,在摆完三列之后,他把剩下的张牌摞到了开始数出的那27张牌上,这时他提出的问题是:最后得到的这一摞牌中从上往下数的第张是什么牌?由于最后得到的这一摞中最上面的张牌是摆完三列之后摞上去的,所以,最后得到的这一摞中从上往下数的