HarbinInstituteofTechnology机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:能源科学与工程学院班级:设计者:学号:指导教师:设计时间:1.设计题目如图2-1所示直动从动件盘形凸轮机构,其原始参数见表2-1。从表2-1中选择一组凸轮机构的原始参数(第24小题),据此设计该凸轮机构。表2-1凸轮机构原始参数升程(mm)升程运动角()升程运动规律升程许用压力角()回程运动角()回程运动规律回程许用压力角()远休止角()近休止角()120150正弦加速度40100余弦加速度605060图2-12.凸轮推杆升程,回程运动方程及推杆位移,速度,加速度,运动线图(1)推杆升程,回程方程运动方程如下:A.推杆升程方程:6506112120[sin]525s14412[1cos]5v2172812sin()55aB.推杆回程方程:1059391060[1cos()]59s910108sin[()]59v2972910cos[()]559a(2)推杆位移,速度,加速度线图如下:A.推杆位移线图Matlab程序:x1=0:0.001:5*pi/6;y1=144*x1/pi-60*sin(12*x1/5)/pi;x2=5*pi/6:0.001:10*pi/9;y2=120;x3=10*pi/9:0.001:5*pi/3;y3=60+60*cos(9*(x3-10*pi/9)/5);x4=5*pi/3:0.001:2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4);B.推杆速度线图Matlab程序:x1=0:0.001:5*pi/6;y1=156/pi-156*cos(12*x1/5)/pi;x2=5*pi/6:0.001:pi;y2=0;x3=pi:0.001:14*pi/9;y3=-117*sin(1.8*x3-1.8*pi);x4=14*pi/9:0.001:2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4);C.推杆加速度线图Matlab程序:x1=0:0.001:5*pi/6;y1=1728*sin(12*x1/5)/(5*pi);x2=5*pi/6:0.001:10*pi/9;y2=0;x3=10*pi/9:0.001:15*pi/9;y3=-972*cos(9*(x3-10*pi/9)/5)/5;x4=15*pi/9:0.001:2*pi;y4=0;plot(x1,y1,x2,y2,x3,y3,x4,y4);3、凸轮机构的ds/dφ-s线图,并以此确定凸轮基圆半径和偏距(1)凸轮机构的ds/dφ-s线图t=0:0.001:5*pi/6;x=144/pi-144*cos(12*t/5)/pi;y=144*t/pi-60*sin(12*t/5)/pi;holdonplot(x,y,'-r');t=5*pi/6:0.01:10*pi/9;x=0;y=120;holdonplot(x,y,'-r');t=10*pi/9:0.001:15*pi/9;x=-108*sin(9*(t-10*pi/9)/5);y=60+60*cos(9*(t-10*pi/9)/5);holdonplot(x,y,'-r');t=15*pi/9:0.01:2*pi;x=0;y=0;holdonplot(x,y,'-r')(2)按许用压力角确定凸轮的基圆半径和偏距a.求升程切点升程许用压力角[1]=400求得转角t=1.0287,进而求得切点坐标(x,y)=(81.6870,35.2516)b.求回程切点回程许用压力角[2]=600求得转角t=4.7890,进而求得切点坐标(x,y)=(-77.822,18.3975)c.确定直线方程推程:y=tan(5*pi/18)*(x-81.6870)+35.2615回程:y=-tan(pi/6)*(x+77.8223)+18.3975d.绘图确定基圆半径和偏距x=-125:1:150;y=tan(5*pi/18)*(x-81.6870)+35.2615;holdonplot(x,y);220103.08rxyx=-125:1:150;y=-tan(pi/6)*(x+77.8223)+18.3975;holdonplot(x,y);x=0:1:150;y=-cot(2*pi/9)*x;holdonplot(x,y);t=0:0.001:5*pi/6;x=144/pi-144*cos(12*t/5)/pi;y=144*t/pi-60*sin(12*t/5)/pi;holdonplot(x,y,'-r');t=5*pi/6:0.01:10*pi/9;x=0;y=120;holdonplot(x,y,'-r');t=10*pi/9:0.001:15*pi/9;x=-108*sin(9*(t-10*pi/9)/5);y=60+60*cos(9*(t-10*pi/9)/5);holdonplot(x,y,'-r');t=15*pi/9:0.01:2*pi;x=0;y=0;holdonplot(x,y,'-r');gridonholdoff如上图所示,在这三条直线所围成的公共许用区域,只要在公共许用区域内选定凸轮轴心O的位置,凸轮基圆半径r0和偏距e就可以确定了。现取轴心位置为x=25,y=-100,则可得到,偏距:e=25基圆半径:4.凸轮理论轮廓线和实际轮廓线及滚子半径确定a.绘制凸轮理论轮廓线Matlab程序编制:t=0:0.0001:5*pi/6;x=(100+144*t/pi-60*sin(12*t/5)/pi).*cos(t)-25*sin(t);y=(100+144*t/pi-60*sin(12*t/5)/pi).*sin(t)+25*cos(t);holdonplot(x,y);t=5*pi/6:0.0001:10*pi/9;x=(100+120).*cos(t)-25*sin(t);y=(100+120).*sin(t)+25*cos(t);holdonplot(x,y);t=10*pi/9:0.0001:15*pi/9;x=(100+60+60*cos(9*(t-10*pi/9)/5)).*cos(t)-25*sin(t);y=(100+60+60*cos(9*(t-10*pi/9)/5)).*sin(t)+25*cos(t);holdonplot(x,y);t=15*pi/9:0.0001:2*pi;x=(100).*cos(t)-25*sin(t);y=(100).*sin(t)+25*cos(t);holdonplot(x,y);xlabel('x/mm')ylabel('y/mm')title('理论轮廓曲线')b.在理论廓线上分别绘出基圆与偏距圆Matlab程序编制:t=0:0.0001:5*pi/6;x=(100+144*t/pi-60*sin(12*t/5)/pi).*cos(t)-25*sin(t);y=(100+144*t/pi-60*sin(12*t/5)/pi).*sin(t)+25*cos(t);holdonplot(x,y);t=5*pi/6:0.0001:10*pi/9;x=(100+120).*cos(t)-25*sin(t);y=(100+120).*sin(t)+25*cos(t);holdonplot(x,y);t=10*pi/9:0.0001:15*pi/9;x=(100+60+60*cos(9*(t-10*pi/9)/5)).*cos(t)-25*sin(t);y=(100+60+60*cos(9*(t-10*pi/9)/5)).*sin(t)+25*cos(t);holdonplot(x,y);t=15*pi/9:0.0001:2*pi;x=(100).*cos(t)-25*sin(t);y=(100).*sin(t)+25*cos(t);holdonplot(x,y);t=0:0.001:2*pi;x=103*cos(t);y=103*sin(t);holdonplot(x,y);t=0:0.001:2*pi;x=25*cos(t);y=25*sin(t);holdonplot(x,y)c.确定滚子半径Matlab程序编制:h=120;t0=pi*5/6;t01=pi*5/9;ts=5*pi/18;ts1=pi/3;e=25;s0=100;t=linspace(0,pi*5/6,1000);s=h*(t/t0-sin(2*pi*t/t0)/(2*pi));dx1=(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*sin(t)-e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0)).*sin(t)+(s0+s).*cos(t)-e*sin(t);p=sqrt(dx1.^2+dy1.^2);holdonplot(t,p);t=linspace(pi*5/6,10*pi/9,1000);s=h;dx2=-sin(t).*(s+s0)-e*cos(t);dy2=cos(t).*(s+s0)-e*sin(t);p=sqrt(dx2.^2+dy2.^2);holdonplot(t,p);t=linspace(10*pi/9,pi*15/9,1000);s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));dx3=-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*cos(t)-sin(t).*(s+s0)-e*cos(t);dy3=-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*sin(t)+cos(t).*(s+s0)-e*sin(t);p=sqrt(dx3.^2+dy3.^2);holdonplot(t,p);t=linspace(pi*15/9,pi*2,1000);s=0;dx4=-sin(t).*(s+s0)-e*cos(t);dy4=cos(t).*(s+s0)-e*sin(t);p=sqrt(dx4.^2+dy4.^2);holdonplot(t,p);holdofftitle('曲率半径ρ','FontSize',20);gridond.绘制实际轮廓线Matlab程序编制:h=120;t0=pi*5/6;t01=pi*5/9;ts=pi*5/18;ts1=pi/3;e=25;s0=100;rr=10;t=linspace(0,pi*5/6,1000);s=h*(t/t0-sin(2*pi*t/t0)/(2*pi));x1=(s0+s).*cos(t)-e*sin(t);y1=(s0+s).*sin(t)+e*cos(t);dx1=(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*sin(t)-e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0)).*sin(t)+(s0+s).*cos(t)-e*sin(t);X1=x1-rr*dy1./(sqrt(dx1.^2+dy1.^2));Y1=y1+rr*dx1./(sqrt(dx1.^2+dy1.^2));holdonplot(x1,y1);plot(X1,Y1);t=linspace(pi*5/6,10*pi/9,1000);s=h;x2=(s+s0).*cos(t)-e*sin(t);y2=(s+s0).*sin(t)+e*cos(t);dx2=-sin(t).*(s+s0)-e*cos(t);dy2=cos(t).*(s+s0)-e*sin(t);X2=x2-rr*dy2./(sqrt(dx2.^2+dy2.^2));Y2=y2+rr*dx2./(sqrt(dx2.^2+dy2.^2));holdonplot(x2,y2)