3 Data Mining for Web Personalization

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3DataMiningforWebPersonalizationBamshadMobasherCenterforWebIntelligenceSchoolofComputerScience,Telecommunication,andInformationSystemsDePaulUniversity,Chicago,Illinois,USAmobasher@cs.depaul.eduAbstract.InthischapterwepresentanoverviewofWebpersonalizationpro-cessviewedasanapplicationofdataminingrequiringsupportforallthephasesofatypicaldataminingcycle.Thesephasesincludedatacollectionandpre-processing,patterndiscoveryandevaluation,andfinallyapplyingthediscoveredknowledgeinreal-timetomediatebetweentheuserandtheWeb.Thisviewofthepersonalizationprocessprovidesaddedflexibilityinleveragingmultipledatasourcesandineffectivelyusingthediscoveredmodelsinanautomaticpersonal-izationsystem.Thechapterprovidesadetaileddiscussionofahostofactivitiesandtechniquesusedatdifferentstagesofthiscycle,includingthepreprocessingandintegrationofdatafrommultiplesources,aswellaspatterndiscoverytech-niquesthataretypicallyappliedtothisdata.WeconsideranumberofclassesofdataminingalgorithmsusedparticularlyforWebpersonalization,includingtech-niquesbasedonclustering,associationrulediscovery,sequentialpatternmining,Markovmodels,andprobabilisticmixtureandhidden(latent)variablemodels.Finally,wediscusshybriddataminingframeworksthatleveragedatafromava-rietyofchannelstoprovidemoreeffectivepersonalizationsolutions.3.1IntroductionTheultimategoalofanyuser-adaptivesystemistoprovideuserswithwhattheyneedwithoutthemaskingforitexplicitly[89].Automaticpersonalization,therefore,isacentraltechnologyusedinsuchsystems.InthecontextoftheWeb,personalizationimpliesthedeliveryofdynamiccontent,suchastextualelements,links,advertisement,productrecommendations,etc.,thataretailoredtoneedsorinterestsofaparticularuserorasegmentofusers.Wedistinguishbetween“automaticpersonalization”andwhatissometimesreferredtoas“customization”.Bothcustomizationandpersonalizationrefertothedeliveryofcontenttailoredtoaparticularuser.Whatseparatesthesetwonotionsiswhocontrolsthecreationofuserprofilesaswellasthepresentationofinterfaceelementstotheuser.Incustomization,theusersareincontrolof(oftenmanually)specifyingtheirpreferencesorrequirements,basedonwhichtheinterfaceelementsarecreated.Ex-amplesofcustomizationontheWebincludecustomizedWebsites,suchasMyYahoo(),andavarietyofe-commerceWebsites(suchas)thatallowformanualconfigurationsofsystemsorservicesbeforepurchase.Automaticpersonalization,ontheotherhand,impliesthattheuserprofilesarecreated,andpoten-tiallyupdated,automaticallybythesystemwithminimalexplicitcontrolbytheuser.ExamplesofautomaticpersonalizationincommercialsystemsincludeAmazon.com’spersonalizedrecommendations,musicorplaylistrecommenderssuchasMystrand.com,andavarietyofnewsfilteringagentsavailabletoday.Traditionalapproachestoautomaticpersonalizationhaveincludedcontent-based,collaborative,andrule-basedfilteringsystems.Eachoftheseapproachesisdistin-guishedbythespecifictypeofdatacollectedtoconstructuserprofiles,andbythespecifictypeofalgorithmicapproachusedtoprovidepersonalizedcontent.Generally,theprocessofpersonalizationconsistsofadatacollectionphaseinwhichtheinforma-tionpertainingtouserinterestsisobtainedandalearningphaseinwhichuserprofilesareconstructedfromthedatacollected.Learningfromdatacanbeclassifiedintomem-orybased(alsoknownaslazy)learningandmodelbased(oreager)learningdependingonwhetherthelearningisdoneonlinewhilethesystemisperformingthepersonaliza-tiontasksorofflineusingtrainingdata.Standarduser-basedcollaborativefilteringandmostcontentbasedfilteringsystemsthatuselazylearningalgorithmsareexamplesofthememory-basedapproachtoper-sonalization,whileitem-basedandothercollaborativefilteringapproachesthatlearnmodelspriortodeploymentareexamplesofmodel-basedpersonalizationsystems.Memorybasedsystemssimplymemorizeallthedataandgeneralizefromitatthetimeofgeneratingrecommendations.Theyarethereforemoresusceptibletoscalabilityissues.Model-basedapproaches,thatperformthecomputationallyexpensivelearningphaseoffline,generallytendtoscalebetterthanmemorybasedsystemsduringtheonlinedeploymentstage.Ontheotherhand,asmoredataiscollected,memorybasedsystemsaregenerallybetteratadaptingtochangesinuserinterestscomparedtomodelbasedtechniquesthatmusteitherbeincrementalorberebuilttoaccountforthenewdata.Theseadvantagesandshortcomingshaveledtoanextensivebodyofresearchandpracticecomprisedofavarietyofpersonalizationorrecommendersystemsthatgenerallyfallintotheaforementionedcategories.Ourgoalinthischapterisnottoprovideanoverviewautomaticpersonalization,ingeneral.Rather,wefocusmorespecificallyonWebpersonalizationwheretherec-ommendedobjectscomefromarepositoryofWebobjects(itemsorpages)browseableeitherthroughnavigationoflinksbetweentheobjects,usuallyinaparticularWebsite.Furthermore,weareparticularlyinterestedinadataminingapproachtopersonaliza-tionwherethegoalistoleverageallavailableinformationaboutusersoftheWebsitetodeliverapersonalexperience.Kohavietal.[62]suggestfivedesiderataforsuccessindataminingapplications:–datarichwithdescriptionstoenablesearchforpatternsbeyondsimplecorrelations;–largevolumeofdatatoallowforbuildingreliablemo

1 / 46
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功