梁昆淼-数学物理方法第5章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第五章付里叶变换§5.2付里叶积分与付里叶变换§5.3函数§5.1付里叶级数(一)、周期函数的付里叶展开,cos,,2cos,cos,1lxklxlx)sincos()(10lxkblxkaaxfkkk设f(x)为周期为2l的函数§5.1付里叶级数考虑的函数族,sin,,2sin,sinlxklxlx为基本函数族将f(x)展开)sincos()(10lxkblxkaaxfkkk0cos1dxlxkll)0(k0sin1lldxlxk0coscosdxlxnlxkll)(nk)(nk0sinsindxlxnlxkll0sincosdxlxnlxkll基本函数族是正交的)sincos()(10lxkblxkaaxfkkkllkkklldlkblkaadf)]sincos([)(10lldfla)(210llkkklldlnlkblkaadlnfcos)]sincos([cos)(10llkdlkflacos)(1)sincos()(10lxkblxkaaxfkkkkllkkklldlnlkblkaadlxnfsin)]sincos([sin)(10llkkdlkflacos)(1)0(2k)0(1kllkdlkflbsin)(1kkba称为周期函数的付里叶系数(在连续点x)狄里系利条件:(付氏级数收敛条件))(xf级数和=若f(x)满足:(1)、处处连续,或在每个周期有有限个第一类间断点(2)、或在每个周期有有限个极值点,级数收敛)]0()0([21xfxf(在间断点x)(二)、奇函数与偶函数的付里叶展开奇函数)()(xfxf1sin)(kklxkbxfllkkdlkflacos)(100cos)(1cos)(1lklkdlkfldlkfl00cos)(1cos)(1lklkdlkfldlkfl00cos)(1cos)(1lklkdlkfldlkxfl00)0(f0)(lflkdlkflb0sin)(2偶函数)()(xfxfllkdlkflbsin)(100sin)(1sin)(1lldlkfldlkxfl00sin)(1sin)(1lldlkfldlkxfl00sin)(1sin)(1lldlkfldlkxfl010cos)(kklxkaaxf0)0('f0)('lflkkdlkfla0cos)(2例:要求在(-,)上,f(x)=x2,展开为Fourier级数,在本题展开所得中置x=0,由此验证1241312112222解:f(x)=x2,为偶函数10cos)(kklxkaaxf0201da0kb0)cos()(2dkfak033132)cos(10kkkxaa02)cos(2dk320a10)cos()(kkkxaaxf02)cos(2dkak])sin(2)sin(1[2002dkkkkkk)1(421222)cos()1(43kkkxkxx=01241312112222(三)、定义在有限区间上的函数的付里叶展开定义在有限区间上的函数,如在(0.l)上的f(x),使延拓成为g(x)在(0,l)上有g(x)f(x)付里叶展开但要根据具体情况进行偶延拓,或奇延拓0)()0(lff进行奇延拓成奇周期函数进行偶延拓成偶周期函数0)(')0('lff(四)、复数形式的付里叶级数,,,1,,,,lxkilxilxilxkieeeeklxkkecxf)(lllkklkklllkdeecdef**)())((klc2lllkkdeflc*))((21*kkcc函数族正交性例:要求f(x)在它的定义区间的边界上为零,据此,展开axxfcos)(解:定义在(0,)上进行奇延拓成奇周期函数1sin)(kklxkbxf0)sin()(2dkfbk0)sin(cos2dkax1sinkkxkb0)]2cos()2[cos(212dkakaa0])(2)cos()(2)cos([2akakakak221cos)1(12akabkk1221sincos)1(12)(kkkxakaxf例:定义在(0,)上的f(x)=x,在它的定义区间的边界上f’(0)=0,f(l)=0,据此,展开f(x)为付氏级数解:0)0('f)sincos()(10lxkblxkaaxfkkk0kb0)(lf00a2)12(nk12)12(cos)(kklxnaxf12)12(cos)(kklxnaxflkdlnfla02)12(cos)(2ldlnl02)12(cos2022)12(sin2)12(2)12(cos)12(22lnlnlnnll12)1()12()12(222lnnlln12)12(cos)(kklxnaxf12)1()12()12(222lnnllank(一)、实数形式的付里叶变换)sincos()(10lxkblxkaaxgkkk设f(x)为定义在-x上的非周期函数§5.2付里叶积分与付里叶变换将g(x)展开付里叶级数将f(x)看为周期函数g(x)于周期2l的极限情况k=0,1,2,...lkklkkk1llkkdlkflacos)(1llkdlkflbsin)(1l)sincos()(10xbxaaxgkkkkkllkkdflcos)(1llkdflsin)(10)(21lim0llldfla10cos)cos)(1()(kkllkxdflaxg1sin)sin)(1(kkllkxdfl积分有限10cos]cos)(1[)(kkllkxdflaxg1sin]sin)(1[kkllkxdfl1cos]cos)(1[limkkllklxdflkkkllklxdf1)cos(]cos)(1[limlk0)cos(]cos)(1[dxdf余弦项0)cos()(dxA0)cos(]cos)(1[dxdfdfAcos)(1)(正弦项0)sin()(dxBdfBsin)(1)(dfAcos)(1)(dfBsin)(1)(00)sin()()cos()()(dxBdxAxf称为付里叶积分付里叶变换式00)sin()()cos()()(dxBdxAxf为振幅谱0)](cos[)(dxC)()()(22BAC)](/)([)(ABarctg为相位谱傅里叶积分定理0cos)(2)(dfA0)cos()()(dxAxf对于偶函数,有付里叶余弦积分0)cos()(2)(dxAxf对称写法0cos)(2)(dfA0sin)(2)(dfB对于奇函数,付里叶正弦积分0)sin)()(dxBxf0)sin()(2)(dxBxf对称写法0sin)(2)(dfB例:将如图的单个矩形脉冲展为付氏积分解:)(tfo-TThf(t)tTthTt00cos)(2)(dfA0)cos()()(dtAtf偶函数,有付里叶余弦积分Tdh0cos2Thsin2A()与曲线称为频谱线(二)、复数形式的付里叶变换00)sin()()cos()()(dxBdxAxf)(21cosxixieex)(21sinxixieeix0)]()([21)(deiBAxfxi0)]()([21deiBAxi0)]()([21)(deiBAxfxi0)]()([21deiBAxi第二个积分中,换为-0)]()([21deiBAxi0)]()([21deiBAxideFxfxi)()()]()([21iBA)]()([21iBA)(F00)]()([21iBA)(F0dfAcos)(1)(dfBsin)(1)(difF)sin)(cos(21)(defi*))((21dxexfxi*))((21dfAcos)(1)(dfBsin)(1)(difF)sin)(cos(21)(defi)(21dxexfxi)(21)]()([21iBA)(F0dxexfxi*))((21dxexfFxi*))((21)(00deFxfxi)()(对称写法deFxfxi)(21)(dxexfFxi*))((21)()]([)(xfF)]([)(1Fxf记为)(xf原函数)(F像函数例:将如图的单个矩形脉冲展为复数形式的付氏变换解:)(tfo-/2/2hf(t)t2/th2/0t)2/sin(hdtetfFti*))((21)(2/2/21dtheti2/2/2tieih)2/sin()(hF例:求函数解:dxexfFxi)(21)()(xf的付氏变换112)sin)(cos1(21dxxixx1,12xx1,0x102cos)1(22xdxx)cos(sin23例:求函数解:dxexfFxi)(21)()0(sin)(axaxxf的付氏变换dxeixeexixiaxia221dxixeexaixai221)()(])sin()sin([2100dxxxadxxxa])sin()sin([21)(00dxxxadxxxaF

1 / 70
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功