热力学陈钟秀第三版习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章1推导范德华方程中的a,b和临界压缩因子Zc及并将其化为对比态方程范德华方程:2mmVabVRTP根据物质处于临界状态时:0)(CTmVp0)(22CTmVp即其一阶,二阶导数均为零将范德华方程分别代入上式得:02)()(32mcmcCTmVabVRTVpC(1)06)(2)(4322mcmcCTmVabVRTVpC(2)由(1),(2)式得Vmc=3b(3)将(3)代入(1)得RbaTC278(4)将(3),(4)代入范德华方程的227baPC(5)则临界参数与范德华常数a,b关系为式(3),(4),(5)由以上关系式可得CCPTRa642722b=CCPRT8ZC=CCCCTRVP=CCCTRbP3=83∵CrTTTCrPPPCrVVV∴CrTTTCrPPPCrVVV代入2VabVRTP可推出22CrcrcrcrVVabVVTRTPP(6)将(3),(4),(5)代入(6)的23138rrrrVVTP即rrrrTVVP8)13)(3(22-1使用下述三种方法计算1kmol的甲烷贮存在体积为0.1246m3、温度为50℃的容器中所产生的压力:(1)理想气体方程;(2)Redlich-Kwong方程;(3)普遍化关系式。解:查附录表可知:KTc6.190,MPapc6.4,1399molcmVc,008.0(1)理想气体状态方程:MPaPaVnRTp56.2110156.21246.015.323214.810173(2)R-K方程:15.0365.225.22225.3106.46.190314.84278.04278.0molKmPapTcRac135610987.2106.46.190314.80867.00867.0molmpRTcbc545.055.010)987.246.12(10246.115.323225.310)987.246.12(15.323314.8)(aVVTabVRTpMPaPa04.1910904.17(3)遍化关系式法226.1109.910246.154VcVVr应该用铺片化压缩因子法Pr未知,需采用迭代法。ZZVpZRTpcr688.410246.1106.415.323314.846令875.0Z得:10.4rp查表2-8(b)和2-7(b)得:24.01Z,87.00Z872.024.0008.087.010ZZZZ值和假设值一致,故为计算真值。MPaPaVZRTp87.1810877.110246.115.323314.8875.0742-2解:理想气体方程molmPRTV/101.1696105.2510314.8336molcm/1.696.13误差:%54.147.14807.14801.1696Pitzer关系法从附录二中差得正丁烷的临界参数为KTc2.425MPaPc800.3193.0因此199.15102.425rT658.0800.35.2rP根据rT和rP值,查附录3表A1和表A2得Z0=0.8648和Z1=0.03761将此值代入10ZZZ求得8720.00356.0193.08648.0Z6105.2510314.88720.0PZRTVmolcmmolm/1479/101479333误差:%115.07.148014797.14802-4将压力为2.03MPa、温度为477K条件下的2.83m3NH3气体压缩到0.142m3,若压缩后温度448.6K,则压力为若干?分别用下述方法计算:解:查表得:Tc=403.6K,Pc=11.28×106Pa,25.0,Vc=72.5cm3/mol(1)PR方程:K=0.3746+1.54226×0.250-0.2699×0.2502=0.74338784.0)(Ta=0.4049b=2.3258×10-5A=0.05226B=0.011922213916.4112111hhhhhhhBAhZh=B/2=0.00119/Z迭代计算Z=0.9572V=ZRT/T=1.8699×10-3m3/moln=V0/V=1513mol压缩后V’=V0’/n=0.142/1513=9.385×10-5m3/mol9247.011'25.0rTKT)(3985.0)('/45724.0)('22TPTRTaCC压缩后压力PabVbbVVTabVRTp7210129.2)'()'(')('''(2)普遍化关系式。普遍化方程:10BBRTBPCC(1)6.10/422.0083.0rTB(2)2.41/172.0139.0rTB(3)将Tr1=6.405477代入(2),(3)得B01=-0.242B11=0.05195代入(1)得B1=-6.8×10-5∵RTBPRTPV1代入B1得Vm1=1.885×10-3m3n=3-11101.88583.2mVV=1501.326mol因为物质的量不变所以Vm2=326.1501142.02nV=9.51×10-5m3/mol同理得B2=-8.1×10-5P2=722210119.2BVRTPa2-6试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)的气体混合物7g,在188℃和6.888MPa条件下的体积。已知B11=14cm3/mol,B22=—265cm3/mol,B12=—9.5cm3/mol。解:28,5812MM由题可知%30221111MmMmMm且127mm∴m1=1.2g,m2=5.8g∴molMmMm143.0n2211由于组分为二元混合物,所以2222122111212ByByyByB带入已知条件得molmB/103258.134∵7618.01RTBPZ,且RTPVZ∴molmPZRTV/1024.434∴混合体积334638.60143.01024.4cmmnVV总2-7解:由nRTPV得RTMmPVRTPM所以RTPM30445.0165.02211MxMxMRTPM=33/3.54672363314.830105500mg又排放管线流速不超过sm/30,以skg/4.1排放。302rmV30mr=m0165.014.33.5467230104.132-8解:RK方程由附录2查得氮的临界参数为KTc2.126MPaPc394.3040.0cCPTRa5.2242748.0=5588.110394.3)2.126()314.8(42748.065.2225.06/)(molKmPaccPRTb08664.0=molm/106802.210394.32.126314.808664.0356001855.0)273()314.8(103.1015588.15.2235.22TRaPA001196.0273314.8103.101106802.235RTbPB按公式(2-22)hhhhhBAhZ1551.111111和公式(2-25)ZBh两式迭代计算SRK方程543.0040.0176.0040.0574.1480.0176.0574.1480.022wwm25.0)]1(1[)(TrmTa=554.0)]163.21(1[25.0m25.0662222/)(0768.0554.010394.3)2.126()314.8(42748.0)(42748.0molKmPaTaPTRacCccPRTb08664.0molm/106802.210394.32.126314.808664.03560273.0)273()314.8(103.10113866.022322TRaPA001196.0273314.8103.101106802.235RTbPB按公式(2-22)hhhhhBAhZ1826.2211111和公式(2-25)ZBh两式迭代计算2-9解:由附录二查得:KTc2.540MPaPc736.2351.06868.02.540371rT462.1736.24rP由图(2-8)知,使用普遍化关系式计算,查附录三得:2634.00Z1123.01Z2240.0)1123.0(351.02634.010ZZZmolJnZRTVP/8.3136371314,8224.054.42223700680454.0101.08.3136)(61122VPVPPV由)(PVUHkJPVHU3.264670.32650)(2-10解:由附录二查得:KTc4.460MPaPc384.3262.0cZ227.0molmVc/1030436632.04.460291rT2706.0227.008775.029056.008775.029056.0RAZmolmZPRTVrTRAcs/10244.72706.010384.3291314.835])632.01(1[6])1(1[7/27/2molgVM/64.4544.72630.0s919.04.460423rT955.2384.310rP根据rTrP值查图2-9得04.21r,查图2-10(27.0cZ)得D=-5.5,代入式(2-86),得084.227.0-262.05.5-04.2)27.0(1)(crrZDmolmVVrc/104587.1084.2103043463/313.087.14564.45cmgVM第三章3-1物质的体积膨胀系数和等温压缩系数k的定义分别为PTVV)(1,TPVVk)(1,试导出服从范德华状态方程的和k的表达式。解:由范德华方程:2VabVRTP微分得bVRTPV)(2332)(22)(bVRTVaaVbVRTVPT)(根据循环关系式1VPTPTTVVP)()()(得23323)(2)(211bVaRTVbVRVRbVbVRTVaPTVPTVVTP)()()(对于定义式232233)(2)(21)(1bVaRTVbVRVbVaRTVbVRVVTVVP232223)(2)(211)(1bVaRTVbVVbVRTVaVPVVkT3-2某理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温度为93℃,反抗一恒定的外压为3.45MPa而等温膨胀,直到二倍于初始容积为止,试计算过程之ΔU,ΔH,ΔS,ΔA,ΔG,∫TdS,∫PdV,Q,W。解:对于理想气体的等温恒外压膨胀,RCv23,RCp25,0T则:0TCUv0TCHp101212.30400kmolkJVPdVPWVV12.304kmolkJWUQ1002221092ln0000kmolkJVVRTdVVRTdVPQVVVVR11762.5KkmolkJTQSR122109

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功