《微积分》(中国商业出版社经管类)课后习题答案习题六(A)1.根据定积分的几何意义说明下列各式的正确性(1)0dcos20xx(2)xxxxd)1(2d)1(220222(3)0d311xx(3)xxdxxd421011解:(1)该定积分的几何意义如右图所示阴影部分面积的代数和,由对称性可知正确.(2)该定积分的几何意义如右图所示阴影部分面积的代数和,且在)2,2(范围内对称,所以是正确的.(3)该定积分的几何意义如右图所示阴影部分面积的代数和,且关于原点对称,所以正确.(4)原式dxx112等式左边的定积分的几何意义是右边图形阴影部分面积的代数和的2倍,且又因为阴影部分在1),1(范围内关于轴对称,所以等式两边相等.2.不计算积分,比较下列积分值的大小(1)xxd210与xxd310(2)xxd231与xxd331(2)xxdln43与xxd)(ln243(4)xxdsin20与xxd20解:(1)由定积分的比较性可知在1),0(范围内32xx,所以前者大于后者.(2)由定积分的比较性可知在3),1(范围内32xx,所以前者小于后者.(3)由定积分的比较性可知在4),3(范围内2)(lnlnxx,所以前者小于后者.1a(4)由定积分的比较性可知在)2,0(范围xxsin,所以前者小于后者.3.用定积分性质估计下列积分值(1)xde2x-10(2)xxd)sin1(2454(3)xxxd1510(4)xxxdsin20解:(1)因为2xe在]1,0[范围内的最大值为1,最小值为1e所以由定积分的估值定理可知:dxdxedxexl1021011012101dxeex(2)因为x2sin1在22]45,4[的最大值为2,最小值为1。所以由定积分的估值定理可知:dxdxxdx2)sin1(l45424544542)sin1(2454dxx(3)设xxxf1)(5则)1(12)910(112x15x)('454xxxxxxxxf令0)('xf则01,0)910(4xxx解得:910x,0x所以)(xf在),0(上单调递增所以)(xf在1],0[的最小值为0,最大值是22所以由定积分的估值定理可知:dxdxxxdx221010510102210510dxxx(4)由图中易知:ADABAB其中xABsin,xADtan,xAC即:xxxtansin亦得到:xxxcos1sin120x,从中1sincosxxx由定积分性质有:dxdxxxxdx1sincos2020202sin12dxxx4.利用定积分的几何意义计算下列积分(1)dxx2222(2)dxxx)21(221解:(1)该定积分的几何意义是以原点为圆心2为半径的一个圆面积的一半,且在x轴的上方.所以原式221R(2)该定积分的几何意义是以1),1(为圆心,以1为半径的一个圆面积的一半且在x轴的上方.所以原式221R215.求下列函数的导数(1)ttexftxd)(212(2)dttxfxex)1ln()(2(3)dtexftxx23)((4)dtsin)()(330txtxfx解:(1)设)(2tgdttet则mxgxgxegxf222)1()(1)()(令434222x')('g)('xxxexemmxf(2)设)()1ln(2tgdtt则mexgegxfxx令)()()()ln()ln(e)('g')('g)('22xxxexxmmxfxyxx0ABDC1(3)设)(2tgdtet则nmxxgxgxfx,)()()(33令xexennmmgfxx213')('g')('(x)'26(4)设)(sin)(33tgtxt则)0()()(gxgxf0(0)'g)('g)('xxf6.求下列极限(1)ttxxxdsin01lim230(2)ttxxxdarctan01lim20(3)tttxxxd)11(01lim2230(4)ttxxxd)1ln(011lim20(5)ttxtxxd)2sin1(1lim100(6)211)1(d1lnlimxtttxx(7)2210dlimxtxxte(8)tettxxtxxd)(1lim2220(9)xxxtxtxxarctansindelim200解:(1)dttxxx23001limdttxx330311lim31(2)tdtxxx01lim200211lim220xxxx21(3)dtttxxx)sin1tan1(01lim2230dtxxxxx)coscos1(01lim30dtxxxxxsintan01lim30dtxxxx23001lim0311lim330xtxx31(4)dttxxx)1ln(11lim020)1()1ln(11lim020tdtxxx0)1ln(11lim20xx(5)dttxtxx100)2sin1(1limdtttxx100)2sin1(lim洛必达法则xxx1)sin1(lim0221)21(lim0xxx2e(6)211)1(1lnlimxdtttxx221lnlim1xxxx4121lim211ln21lim121xxxxxx(7)222210lim10)ln(limxtxxtxxdteedtexeexxedtextxx222021ln1lim(8)2201)(arctanlimxdttxx2201limarctan)lim(xdtxxx01lim422xx(9)dtettxxtxx22)(120limdtexettxtxx22)(lim20洛必达法则21)21()(lim2222xxxxeexx7.设)(xF在]b,[a上连续,且0)(xfttfttfxFxbxad)(1d)()(求证:(1)2)('xF;(2))('xF在]b,[a内有且仅有一个实根.解:证明:(1)设)(1)()(thdtf(t)tgdttff(t)f(t)b)hxhgxgxFbhxhagxgxF1('-)('(a)'-)(')(')()()()()(又因为2)(',0)(xFtf(2)因为b],[aF(x)在上单调增加,又因为0)(1)(1)(detfdetfaFbaab0)()(dttfbFba又因为F(x)在区间],[ba上连续.所以在区间],[ba内紧有一个实根.8.设)(xf为连续函数,且存在常数a满足dttfxaxx-)(e1求)(xf及常数a.解:设)()(tgdeef则)()(1xgagxex对等式两边求导,得:)((')('1xfx)gagxex所以11)(xexf所以xeeaxaexdxedttfxaxxaxax11111)(所以1a9.设xdttftxxcos1)()(0,说明1)(20dxxf.解:xdtxQdttQxttQQxQxttdQQxQxtQtdQxQxdtttfQxQxdttftxtQttftQxxxxxxcos1)()(0)()]0()([)()]0()([)(()]0()([)()]0()([)()()()('P,)()('000000即102sin)(cosxf(x)sinxQ(x)cosx-1P(0)-)P(20xdxxfx10.用牛顿-莱布尼茨公式计算下列积分(1)381dxx(2)xeexxd)(11(3)dxxxe21)(ln2(4)xxxd1arcsin22221(5)xxdcos0(6)xxd21(7)2114dxx(8)2204dxx(9)xxxxedln221(10)xxdtan36(11)xdx236tan(12)xxxd1241(13)xdsin2120(14)xxd2sin10(15)xxxxxxd)sin(sincos224(16)xxd},1max{231解:(1)29182332381xxdx(2)011)()(11xxxxeedxee(3)1)(ln31)(ln)(ln)(ln23212122exxdxdxxxee(4)xxddxxxarcsinarcsin1arcsin222122221)3616(21122arcsin21222sx28852(5)2sin02sincoscos2cos2200xxxxxxxxdxxdxdxx(6)251021022122200121xxxdxxdxdxx(7)3112arcsin4211xxdx(8)8022214220xarctgxdx(9)xxdexdxxxxdxdxxxxeeeelnln2121ln21ln1211221)3(211)(ln212)1(21222eexe(10)3ln2163coslntan36xxdx(11)dxxdxxxdx)1(seclcos1tan23623623612ln2)633()33(6332(12)dxxxdxxxxdxxx12112)1(414124114ln44(xx12ln2(13)dxxdxxdxx)21(sin)sin21(6sin212602062)21cos(06)cos21(xxxx1213(14)dxxxdxxxdxxxdxxxxxx)cos(sin)sin(coscossin2sin14400022)sincos(04)cos(sin4xxxxxx(15)22442sin1)sin()sin(1)sin(sincos224224xxxxdxxdxxxxxx(16)321013311l}x,1max{223111231xxdxxdxdx11.设tttxftxde)l()(20,问x取何值时,)(xf取极大值或极小值.解:设)(l)e(-2ttgdett则)()()(egxgxf所以xxexxexxxxf22)1()1()('g)('因为)('xf在,0)(,),(-1,),1(上大于0,在1),0(内小于0所以)(xf在),(1,0),(上单调递增,在1),0(内单调递增.所以当0x时,f(x)取极大值,1x时,f(x)取极小值。12.设xxxIxxxIxxxxId)cos(sind)cos(sindcos1sin522322222221比较321,I,II的大小.解:22122sincos1xIxdxx0222(sincos)Ixxdx