《微积分》(中国商业出版社-经管类)课后习题答案五

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《微积分》(中国商业出版社经管类)课后习题答案习题五(A)1.求函数)(xf,使)3)(2()(xxxf,且0)1(f.解:6x5x)(f2xCxxxxf62531)(236230625310)1(CCf62362531)(23xxxxf2.一曲线)(xfy过点(0,2),且其上任意点的斜率为xxe321,求)(xf.解:xexxf321)(Cexxfx341)(21232)0(CCf1341)(2xexxf3.已知)(xf的一个原函数为2ex,求xxfd)(.解:222)()(xxxeexfCxeCxfdxxfx22)()(4.一质点作直线运动,如果已知其速度为ttdtdxsin32,初始位移为20s,求s和t的函数关系.解:tttSsin3)(2CtttScos)(31212)0(CCS1cos)(3tttS5.设211)(lnxxf,求)(xf.解:12arctan)(ln11)(lnCxxfxxf)0()(arctanarctan1CCeexfxCx6.求函数)(xf,使5e1111)(22xxxxf且0)0(f.解:Cxexxxfexxxfxx521arcsin1ln)(1111)(25221002100)0(CCf21521arcsin1ln)(2xexxxfx7.求下列函数的不定积分(1)xxxxd2(2))1(tadt(3)mnxxd(4)xxxd1122(5)xxxd1124(6)xxxxdcossin2sin1(7)xxxxdcossin2cos(8)xxxd2cos1cos12(9)xxxxdcossin2cos22(10)xxxdsin2cos22(11)xxxxdcossin12cos22(12)xxxd1e1e2(13)xxxxd85382(14)xxxxd105211(15)xxx-xxd)e(e(16)xxxxd)31)(2e((17)xxxxxd1111(18)xxxxxxd151)1(222(19)xxxd1142(20)xxxxdsincos1cos1222(21)xxxxxd)1(1223(22)xxxxd1224解:(1)=Cxxdxxx252323215232)((2)=Ctattda2121)1(2)1()1(.1(3)=00,mCxdxnmCxIndxxmnmCxmnmdxxmnmmnmn(4)=Cxxdxxarctan21212(5)=Cxxxdxxxxxarctan2311)1(32222(6)=dxxxxxdxxxxxxxcossin)cos(sincossincossin2cossin222=Cxxdxxxcossin)cos(sin(7)=dxxxdxxxxx)sin(coscossinsincos22=Cxxcossin(8)=Cxxdxxdxxx2tan211cos121cos2cos1222(9)=Cxxdxxxdxxxxxtancotcos1sin1cossinsincos222222(10)=dxxxdxxx122cos2cos22cos121cos=Cxxx2sin41sin21(11)=Cxdxxdxxxxxxxtan2cos12cossinsincossincos2222222(12)=Cxedxexx1(13)=Cxdxdxxx85ln85328532(14)=Cdxdxxxxx22ln5155ln22151512(15)=Cxedxxexxln1(16)=Ceedxeexxxxxxxx6ln63lnl)3(2ln2)3(26(17)=Cxdxxdxxxxarcsin211211122(18)=Cxxxdxxxxarcsin5ln21151222(19)=Cxdxxarcsin112(20)=Cxxdxxdxxx2tan211cos121cos2cos1222(21)=Cxxxdxxxxdxxxxxarctan1ln1111)1(1)1(22222(22)=Cxxxdxxxdxxxxarctan22312212)1(13222248.用换元积分法计算下列各题.(1)xxxd24(2)xxd)23(8(3)xxxde3e42(4)32cosd2xx(5)xxxd432(6)52xd2xx(7)xxxeed(8)xxxeed(9)1tancosd2xxx(10))ln-(1dxxx(11)xxx2ln1d(12)xxxde9e2(13)xxxxdsin2cossin2(14)xxxd212(15)xxxxd1arctan2(16)xxe1d(17)xxxd11arctan2(18)xxxxde)1(422(19)xxxd1335(20)xxxxdln2ln(21)xxxdsin1sin2(22)xxxxd2sin1cossin(23)2)cos2(sindxxx(24)xxxxdcossintanln(25)xxx22cos3sind(26)1212dxxs(27)3)1(1dxxx(28)52d24xxxx(29)xxxxd)ln1((30)xxxxd12(31))1(lnlnd2xxxx(32)xxxxd)1(arcsin(33)xxxxcossind(34)xxxd)1(xarctan(35)xxxdcos1cos2(36)xdxx3cos2sin(37)xxxxd2cos)sin(cos(38)xxxxdsin1cossin4(39)xxdsin14(40)xdx3tan解:(1)=Cxxxdxxdxxx2123)2(12)2(32)2(262262(2)=Cxxdx98)23(271)23()23(31(3)=Ceeedxxx3arctan3213212222(4)=Cxxxd32tan2132cos32212(5)=Cxxxdxxd333334324)4(314)(31(6)=Cxxxd21arctan214)1()1(2(7)=Ceeedxxxarctan1)(2(8)=Ceeeedxxxx11ln211)(2(9)=Cxxxd21)1(tan21tan)1(tan(10)=Cxxdlnx1lnln1)ln1((11)=Cxxxdlnarcsinln1)(ln2(12)=Ceeedxxx3arcsin2922222(13)=Cxxxdxxxd2222sin2ln21sin2)sin2(21sin2)(sinsin(14)=Cxxxd222212121)21(41(15)=Cxxxdxxxd23222)(arctan32)1ln(21)(arctanarctan1)1(21(16)=Ceeeedeedeeeddxeeexxxxxxxxxxxx1ln1)1()()1()()1((17)=Cxdxxxdx2221arctan211arctan1arctan1111arctan(18)=Cexxdexxxx422422221)42(21(19)=)(131)(131333333tdtttxxdxx令)()1()()1(31)(1113131323tdttdttdttCxxCtt3233533235)1(21)1(51)1(21)1(51(20)tttdtxxxd2)(lnln2)(lnln令ttdtdtttdt2)2(2)2()2(2)(2221CxxCtt21232123)ln2(4)ln2(32)2(4)2(32(21)Cxxxd2cosarcsincos2)(cos2(22)Cxxxxxxd12)cos(sin)cos(sin)cos(sin(23)Cxxxd12)2(tan)2(tan)2(tan(24)Cxxxdxdxx2)tan(ln21)tan(lntanln)(tantantanln(25)Cxxxdxxd)tan3tan(31)tan3(1)tan3(31tan31)(tan22(26)Cxxdxxx2323)12(32)12(324121212Cxx2323)12()12(61(27)dtttttxxxxd3321)1(1)1(令CxCtdtt1arctan2arctan21122(28)Cxxxd21arctan414)1()1(212222(29)CxCeeddxxexxxxxxxlnlnlnl)ln1((30)Cxxxdxdxxdxxxx23232222)1(3131)1(121)1((31))1()(ln令)1(lnln)(ln22tttdtxxxdCttttdttd1ln211)1()(21222222CxxCxx)1ln(ln21lnln1lnlnln21222(32)txarcsin令,则tdttdtcossin2CxCtdtttdttttt232322)(arcsin34342cossin2cossin(33)Cxxxdxxxdtanln2tan)(tancossin)(2(34)Cxxdxxdxx22)(arctanarctanarctan2)(1arctan2(35)Cxxxxdsin2sin2ln221sin2)(sin2(36)Cxxxdxdxxx543cos52coscos2coscossin2(37))sin(cos)sin(cos)sin(cos)sin(cos22xxdxxdxxxxxCxx3)sin(cos31(38)Cxxxd242sinarctan21sin1)(sin21(39)C

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功