《微积分》(中国商业出版社-经管类)课后习题答案三

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《微积分》(中国商业出版社经管类)课后习题答案习题三(A)1.根据导数定义求下列函数的导数:(1);)0()(xxxf(2);)0(1)(2xxxf(3);)0()(32xxxf(4).)0(log)(xxxfa解:(1)xxxxf2121)()(2121(2)322)'()(xxxf(3)313232)'()(xxxf(4)naxaxexxxfeaa111log11log1)'(log)(2.求下列曲线在指定条件下的切线方程;(1)曲线23xxy的与直线xy5平行的切线;(2)余弦曲线xycos在点2x处的切线;(3)双曲线xy1的经过点(2,0)的切线.解:(1)5,5kxy则直线23xxy5232xxy可得11x,352x21y或27502y。斜率为5,且经过)2,1(或)2750,-35(的斜率为35xy或271755xy(2)2sin'xxy-1当2x时0y斜率为,1且经过)0,2(的斜线为xy2(3))0,2(得直线为bkxy过)0,2(02bkkb2kkxy2xyy1kxy21则kx1ky)0(k),1(kk在kkxy2上,代入xxyk22,13.如一直线运动的运动方程为,122tts求在3t时运动的瞬时速度.解:22',122tstts当3t时,8ssmvt/834.设函数)(xf在点ax可导,求:(1)0limx;)()(xxafaf(2)0limh;2)3()5(hhafhaf(3))(af,如已知0limt.61)3()(tafaft解:(1)0limx)(')()()(lim)()(0afxaaxafafxxafafx(2))(')()()(lim2)3()5(lim080afxaaxafafhhafhafhk(3)2)(61)3()(3lim31)3()(lim030aftafafttafafttt5.设)(xf可导,求)]([)]([lim220xxfxxfx.解:xxfxxfxfxxfxxfxxfxx)]()([)]()([lim)]([)]([lim02206.设函数)(xf在0x点连续,且极限,23)(lim0xxfx问函数)(xf在0x点处是否可导?若可导,求.)0('f解:23)(lim0xxfxf(x)在0x点连续,3)(,23)(lim00xxxfxxf2x3x)(limxf(0)x)(lim)(f)(lim)0(0x0x0ffxxxxffx7.求函数xxxxf2)(的不可导点.解:xxxxf2)(当02xx时,即1x或0xxxxxxf23)()(223当02xx时,即32)(',102xxxfx,0)0()0(ff)(')(2)(2)(])()([lim)('0xfxfxfxfxfxxfxfx1)1(f1)1(f)1()1(ff1x为f(x)的为不可导点8.设axxxsxfa,0,00,1sin)(在什么条件下可使)(xf在点0x处(1)连续;(2)可导;(3)导数连续.解:xxxxxf1cos,1sin0x00x1sin)(2为有界函数函数1)连续0a0)0(1sinxlim1sinxlima0a0fxxxx2)可导xxxxxxfxfaxaxx1sin)(lim1sin)(lim)0(01sin0)x(lim)0(100a0存在101aa此时0)0(f3)导数连续0x00x1cos1sin)(21xxxaxxfaa若)('xf再0x处连续,则20)0()0(lim)0(lim00afffxx9.设)(xf可导且,0)0(f证明)sin1)(()(xxfxF在0x点可导,并求).0(f解:)0(0)(lim0sin1)((lim)0()0(lim)0('00fxxfxxxfxFxFFxxx10.对于函数),(xf如xxxfxxfx)()(lim0存在,是否)(xf必存在?解:不一定,如xxf)(,此极限在0x处为0,但)0('f不存在.11.设)()()(xgaxxf,(1)若)(xg在点ax连续,求)('af;(2)若点ax是)(xg的间断点,)(xf是否在ax处必不可导,为什么?解:1))()()()()(),()()(agxgaxxgafxgaxxfax2)如Axgax)(lim,则Aaf)('.如)(limagax不存在,则)('af不存在.12.设函数0x0,0x,1)(12xexxf则下列结论正确的是().A.)(xf在0x点间断B.)(xf在0x点连续,但不可导C.)(xf在0x点可导,但)(xf在0x点间断D.)('xf在0x点连续解:D.xxxexexxex1312122121,xxxxexexxexex14122131216210lim)(lim02lim)(lim)(lim4140013000exxfexxfxfxxxxxx0x,时0)()()(xfxfxf)(xf在0x点连续13.设)(xf为可导函数,且满足12)1(4lim0xxfx求曲线)(xfy在点))1(,1(f处切线的方程.解:12)1(4limxxfx则4+f(1)=0f(1)=42211cos11sin11xyyxyxxfxxfxfxffxxx2)21(4lim2)1(4lim)1()1(lim)1(00022))2(1(4lim20xxfx所以k=2且经过)4,1(则切线为62xy14.设)(xf是偶函数,且在点0x可导,证明:.0)0(f解:f(x)为偶函数,所以f(-x)=f(x),两边求导为:)()(xfxf所以0)()(xfxf当x=0时,等式变为0)0(2f所以0)0(f15.求下列函数的导数:(1);13524xxxy(2);)1(xxy(3);215xxy(4);ln1ln1xxy(5)xxyanlog(6);133xxy(7);sin2xyx(8);32xyx(9);cos1xxy(10);cottanxxxy(11);arctansxy(12);arccosxeyx(13);cossin2cosxxxy(14);lntan2xxxy(15);5log222xyx(16).1111lnxxxxy解:1)23241620'135xxxyxxxy2)xxxxxxxy213)1(21])1[(3)22)22222)1(1(5)1(52)1(515xxxxxxxxy4))xln1(2x)ln(1)ln1(x1-x)ln1(1)ln1ln1(22xxxxxy5))ln1log(ln1log)log(11aaxxaxxanxaxyxnnxnxn6)3413323233223338313)1(xxxxxxxxxy7)x)cos2sinx(ln2xcos22sinx12)xsin2(xxxnyx8)3)ln2(333ln3)3()(2222xxxxxxxeyxxx9)2)cos1(sincos1)cos1(xxxxxxy10)xcscxcotx-xsec)cotxx-x(tan22y11)21arctanx)arctanx(xxxy12)22xxx-11-x(arccos1e-xarccose)xarccos(xxexey13)2)cos(sin2cos)sin(cos)cos(sin2sin2)cossin2cos('xxxxxxxxxxy2)cos(sin2cossin2coscoscos2sin2sin2sin2xxxxxxxxxx2)cos(sin)cos(sin2sin)sin(cosxxxxxsxxxxxxxxxxcossin)cos(sin)cos(sin)cos(sin2sin1214)xxxxxxxxnxxxytanlnseclntan2)1tan(222)tanlnseclntan2(2xxxxxxx15)32222ln)25log2(xxyxx16))111211(ln)1111(ln2xxxxxxxxxy=2222211111.1.11xxxxxxx16.应用反函数求导法则证明:(1);11)(arctan2xx(2).11)(arccos2xx解:1)tanyxarctanxy11)(arctan2xxyyx2cos1)(tan22211tan11cos1xyyxy2)211)(arccosxxxyarccosyxcosyyxsin)(cos2211cos11sin11xyyxy17.设函数1)(3bxaxxfy有反函数)(xg,且曲线)(xgy在点(2,1)处的切线方程为5451xy,求常数a,b.解:因为函数1)(3bxaxxfy有反函数)(xg,且曲线)(xgy在点(2,1)处的切线方程为5451xy,所以函数f(x)过点(1,2),又因为曲线)(xgy在点(2,1)处的切线方程为5451xy,所以a=1,b=2.18.求下列分段函数)(xf的)(xf,:)1(),0(ff(1)0;x,e0,x,1sin)(xxxf(2).02-,tan,2x0,arctan)(xxxxf解:1))(xf=.)1(.1(0),0,0,cos10efefxexxx2))(xf.21111)1(.10cos1)0(,02,sec21,112222ffxxxx19.求下列函数的导数:(1);)15()53(53xxy(2);41)23(23xxy(3);ln)ln(33xxy(4);12xxy(5));)(cos(sinxnxyn(6);11lnxxy(7);2tanlnxy(8);2cos5xy(9);cscsec22axaxxy(10);1cot2xxy(11);arcsin12xxxy(12));ln(22222axxaaxxy(13);12arctan2xxy(14);1arccos2xxy(15);2xaey(16);xxxxeeeey(17);11arctanxxy

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功