习题四(A)1.判断下列函数在给定区间上是否满足罗尔定理条件,若满足条件,求出相应的值.(1);],60[6)(上在xxxf(2)],11[)(3在xxf上.解:(1)062x-6(x)'xxf],60[4x满足(2)031)(32xxf不满足2.下列函数在给定区间上是否满足拉格朗日定理条件?如满足,求出相应的值(1)],0[2)(3axxxf在上;(2)上在2π,0sin)(xxf.解:(1)23)('xxfaaf(a)f320)0(aafafaf33232)(')0()(22满足(2)xxfcos)(1)2(0)0(ff)20(2arccoscos2)('2)0()2(,fff满足3.证明:(1)2πarccosarcsinxx;(2))(arctanarctanbaabab.解:(1)令2arccosarcsin)(xxxF011x-11(x)'22xFCxF)(取0x,得0)0(F0C得证(2)令xxxFarctan)(0))('0(0111)(2xFxxxF时)(xF为非增函数又ba)()(aFbF4.对函数xxfsin)(和xxgcos1)(在]2π,0[上验证柯西中值定理.解:据柯西中值定理)(')(')0()2()0()2(gfggff4sincos15.设)(xf在][ba,上有二阶导数)(xf,且0)(xf,证明)(xf在)(ba,中至多有一个驻点.解:假设)(xf在)(ba,中有二个驻点dc,0)('0(c)'dff)(0)(dcxxf,这与题设0)(xf矛盾得证6.证明:第三章§3.1中的命题.解:(x)'lim)()(xlim)('00000Afxffxfaa得证同理Bxf)('07.设函数)(xf,)(xg在(a,b)内可导,0)(xg,且))(0())g((')(')(baxxxfxgxf,.证明:))()(()(baxxCgxf,.(其中C是常数)(提示:考虑函数.xgxfx))(/)()(解:令)(/)()(xgxfxF)('')('2xg(x)f(x)g(x)fxg(x)F0')(')(0)((x)gxf(x)fxgxg且CxF(x)F)(0'得证8.设函数)(xf在][ba,上连续,在)(ba,内有二阶导数,且)(0)(,0)()(bcacfbfaf.证明:在)(ba,内至少存在一点,使0)(f.(提示:用两次中值定理).解:0cfbfaf)(0)()(,存在,,)(caaβ)(bc,使得',0)('faf(β)0且x(,β),'f(x)递减)(Eba,使0)(f9.设)(xf在)(ba,中有1n阶导数,求)(0xx的n次多项式nnnxxaxxaxxaaxP)()()()(0202010使得),,2,1,0()()(0(0)(nkxfxPk)kn解:!)()(!)(0)(0)(0)(nxfaxfanxPnnnnnn!)1()()(!)1()(0)1(10)1(10)1(nxfaxfanxPnnnnnn依此类推,可得)(',)(000xfaxfa110.极限xxxxsin1sinlim20能否用洛必达法则计算?其值为何?解:不能01sinlimsin1sinlimsin1sinlim02020xxxxxxxxxxx11.求下列极限:(1)216lim42xxx;(2)xxx1)1(limπ0;(3)xxxlnlncotlim0;(4)xxxxxxsin2eelim0;(5))0()lnln(limaxxxax;(6))cos1(1lim3sin0xxexx;(7)20)(2)()(limhafhafhafh(设)(xf在)ax点邻近连续).解:(1)3214lim216lim3242xxxxx(2)100)1(lim1)1(limxxxxxxx(3)12sin2lim1)csc(cot1limxlncotlnlim0200xxxxxxxxx(4)2coslimsinlimcos12limsin2lim0000xeexeexeexxxeexxxxxxxxxxxx(5)0ln11limln1lnlim)lnln(limxaxaxxaxxxxxaaxaxax(6)2lim)cos1(1lim2303sin0xxxxxxexxx(7)hhhafafafhafhafhafhafhh1.)]()([)()(lim)(2)()(lim020=(a)fhh)(af(a)fh''lim012.求下列极限:(1)xxxxln11lim1;(2)111lim0xxex;(3)2πtan)1(lim1xxx;(4)xxx111lim;(5)xxx2011lim;(6)xxxln1arctan2πlim;(7)xxxx1sin1cotlim0;(8)xxxln10)(cotlim;(9)xxxex10)(lim;(10)xxxtan0)(arcsinlim.解:(1)21111limln11lnlim)1(ln1lnlimln11lim21111xxxxxxxxxxxxxxxxxx(2)212lim11lim)1(1lim111lim0000xxxxxxxxxxxxxxeeexeeeexxeex(3)22sin2)1(2cos22sinlim2cos2sin)1(lim2tan)1(lim111xxxxxxxxxxxx(4)eeeexxxxxhxxxxxx1limlim1lim1lnlim1111111(5)1lim11lim3202022lim111lnlim11ln020xxxxxxxxxxxxeeex(6)exxxeexxhxxxhxx1)1(arctan2limlimarctan2lim2arctan2ln1(7)61!321limsin)sin(coslim1sin1cotlim3320200xxxxxxxxxxxxxxx(8)eeeexxxxxxxxxxxx1limln1)(cotlimcos1lim1)csc(cot1limlncotln00020(9)200101lim111)1e(1lim)(limexexexexexxexxxxxxxxxx(10)1limcotarcsinlnlimlim)(arcsinlim011arcsinsin00arcsinlntan0tan022eexxeexxxxxxxxxxx13.设0,,0,sin)(xbaxxxxxf在0x点可导,求ba,解:1)(lim)(lim1sinlim)(lim0000bbbaxxfxxxfxxxx0)(0'01sinlim)(0'0aafxxxfx14.设当0x时)()1()(22xobxaxexfx求常数ba,.解:22lim22lim)1(lim)(lim0022020aexxaxbexbxaxexxfxxxxxx从而可得10)(lim0bbexx,210)2(lim0aaexx15.求下列函数的单调区间:(1)2224xxy;(2)xexy;(3)xxy12;(4)xxyln22.解:(1)1,1,0044'3213xxxxxy所以,当),1()0,1(x单调增当)1,0()1,(x调减(2)0x01'xey所以,当0x单调增当0x单调减(3)2,00)1(2)1(-)(12'212222xxxxxxxxxy所以,当2x单调增当02x单调减当0x单调增(4)2101-4'xxxy所以,当21x单调增当2121x单调减当21x单调增16.证明下列不等式:(1))1(xexex;(2))1(132xxx;(3))0(2sin2xxxxx;(4))1(lnln121221xxxxxx.解:(1)令)1()(xexexFxexFxe)('当1x时,0)('xF且0)(lim1xFx)(xF0得证(2)令)1(12)(xxxxF01x1)('2xxF且3)(lim1xFx得证(3)令0)(sin)(xxxxF01-cos)('xxF且0)(lim1xFxxxsin令2sin)(2xxxxG1cos)(xxxG01-sin)(xxG又0)('lim0xGx0)(xG2sin2xxx综上得证(4)令)1(ln)(xxxxF01ln)(xxF1)()()(1222xxxFxF得证17.设2,,,qpZqp,试比较qp与pq的大小.(提示:利用函数xxxf/ln)(的单调性).解:令2)(ln)(xxxxf2ln1)(xxxf1当0)('2xfex若qp则)()(qfpfqqpqpppqlnlnqppqlnlnqppqeelnlnlnlnqppqee2当0)('xfex同理若qp则pqqp18.设函数)(xf在区间),(ba上恒有0)(,0)('xfxf,则)(xf在),(ba上(B).A.单调上升,下凸B.单调上升,上凸C.单调下降,下凸D.单调下降,上凸解:B0)('xf0)(xf19.给定曲线))((:IxxfyC,已知)(''xfy的图形如4-17,则曲线C在(,)上是(C).A.下凸的B.上凸的图4-17C.单调上升的D.单调下降的解:C20.确定下列曲线的上、下凸区间和拐点:(1)32xxy;(2)2241xxy;(3)xxey;(4)12xxy.解:(1)232'xxy062xy31x拐点)272,31(当)31,(x下凸当),31(x上凸(2)3)1(12xy223]1)[(x1)--2(x'y0]3)1[(]3)1[()1(83]1)2[(x-422222xxxy2021xx拐点)410(,)412(,在),2()0,(下凸在),20(上凸(3)xxeyxe'02exxxey2x拐点)e2,2(2在),-2(上凸在)2,-(上凸(4)12xxy2222)1(2)1(-1)-(2'xxxxxxxy423)1()2-1)(-2(-1)-2(xxxxxy=0x无解无拐点当1x时y不存在在