结合小波变换和中值滤波心电信号去噪算法研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Automation&Instrumentation2012(12):1001-9944(2012)12-0046-04徐寒,王冬冬,蒋同斌(,223003):在采集心电信号数据的过程中,必然会涉及到肌电干扰、基线漂移和50Hz工频干扰,而使用常规系统辨识法则常常在一定程度上难以鉴定心电信号的特性。中值滤波器是一种操作简单的、高速的非线性信号滤波器,它常用于心电信号中低频去噪过程,如基线漂移。因为WTS的二进小波是一组带通滤波器,不同尺度有不同的频带,小波变换被选定用来分解原始信号,小波变系数的重建形成了消除干扰的心电信号。采用模拟实验是要确定如何进行自适应的阈值选取,适当的分解层数和小波函数。通过使用MIT/BIH数据库的心电信号,并结合计算机仿真形成的心电信号来对该方法进行检验。结论表明此算法可有效抑制心电信号中的主要噪声,满足心电波形临床分析和诊断的需求。:;;;:TP13:BResearchontheECGSignalDenoisingAlgorithmBasedonWaveletTransformandtheMedianFilterXUHan,WangDong-dong,JIANGTong-bin(FacultyofMathematicsandPhysics,HuaiyinInstituteofTechnology,Huaian223003,China)Abstract:IntheprocessofECGsignaldataacquisition,itwasnecessarytoinvolvetheelectromyographicinterfer-ence,baselinedriftand50Hzinterference,whileusingtheconventionalsystemidentificationrulesoftentosomeex-tentandwasdifficulttoidentifythecharacteristicsofECGsignal.Medianfilterwasakindofsimpleoperation,highspeednonlinearsignalfilter,itwascommonlyusedintheECGsignaldenoisingprocessinlowfrequency,suchasbaselinedrift.SinceWTStwodyadicwaveletwasasetofband-passfilterswithdifferentscales,differentfrequencybands.Thewavelettransformwasusedtodecomposetheoriginalsignalselected.WavelettransformcoefficientsofthereconstructionwasformedtoeliminateinterferenceinECGsignal.Thesimulationexperimenttodeterminehowadaptivethresholdselection,appropriateleveldecompositionandwaveletfunction.ThroughusingtheMIT/BIHdatabaseofECGsignal,andcombiningwiththecomputersimulationoftheformationofECGsignalonthemethodoftesting.ConclusionshowsthatthisalgorithmcaneffectivelyrestrainthemainnoiseinECGsignals,meettheECGwaveformanalysisofclinicalanddiagnosticrequirements.Keywords:ECG;denoisingalgorithm;wavelettransform;medianfilter:2012-06-19;:2012-10-22:(1962—),,,,、。、。,[1]。,、,。,,,,;462012(12)。,,。,[2-4]。J.Morlet1984,、、、DonohoJohnstone[5],,QS,。,。,。[6],。。[7],,。,。[8],。,。MIT/BIH。。1,1Hz,;,。1.1,,。,。,,。,。。、。,()。,。,。,,。,。,。,,。1.2(),,。,,,、()。,。:x={x(1),x(2),x(L)}L,L。Xx={x(-k+1),x(-k+2),…,x(k+L)}x(n)=x(1)(-k+1)≤n≤1x(n)1<n<Lx(L)L≤n≤(L+k≤≤≤≤≤)(1)n,1≤n≤L,x(1)(n),2k+1:x(n-k),x(n-k+1),…x(n),…,x(n+k-1),x(n+k)。,x={x(1)(1),x(1)(2),…x(1)(L)}X2k+1;x(1)2k+1,x(2),x(p)={x(p)(1),x(p)(2),…,x(p)(L)}2k+1XP47Automation&Instrumentation2012(12),。,QRS,TP,,。,(QRS,TP),。1.3,30min105MIT-BIH,1。1(b),m=2,360Hz;0.5Hz。1(c)。,。,。,,。,。,,。,。,,,,,。250Hz,5Hz~2kHz,。,。,。,,,、、。,。,,,。,,。2.1,,,,。,Donoho。Tf赞,f赞h,f赞s,:f赞h=f,f>T0,f≤≤T(2)f赞s=sign(f)f-≤≤Tf>T0f≤≤T(3),,,。,:①,Stein():T,,T,,。1Fig.1Lowfrequencyinterferencesignalfilterthesimulationresults(a)(b)(c)(d)482012(12)②sqrt(2log(length(X))),,sqrt(2log(length(X)))。③:。(SNR),。④-:-,。,,。。2.250Hz,。,。。,,。,。3,MIT/BIH。10k,。。,。,。2,。2,,。,,QRS。4,,,。,。:[1],.—-:[J].,2010,29(5):11-16.[2],.[J].,2002,15(1):64-67.[3]AKZiarani,AKonrad.Anonlinearadaptivemethodofelimi-nationofpowerlineinterferenceinECGsignals[J].IEEETransactionsonBiomedicalEngineering,2002,49(6):540-547.[4],.[J].,2006(8):901-905.[5]DavidLDonoho,IainMJohnstone.Idealspatialadaptationbywaveletshrinkage[J].Biometrika,1994,81(3):425-455.[6],.[J].,2002,24(2):110-117.[7],.ECG[J].,2004,17(3):832-841.[8],,,.[J].,2007,28(1):201-206.[9]JAVanAlste,TSSchiler.Removalofbase-linewanderpower-lineinterferencefromECGbyanefficientFIRfilterwithare-ducednumberoftaps[J].IEEEBME,1985,32(12):1052-1060.■2Fig.2FilteringalgorithmforremovalofwhitenoiseeffectchartV/mV420-200.81.62.43.24.04.85.66.47.28.0t/s(a)V/mV420-200.81.62.43.24.04.85.66.47.28.0t/s(b)2013《》邮发代号:6―20定价:8.00元/期■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■49

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功