BSENISO11114-1可运输气瓶.气瓶和瓶阀材料与盛装气体的相容性.第1部分:金属材料欧洲标准由欧洲标准化委员会于1997年9月18日以及由勘误表于1998年4月2号批准。欧洲标准化委员会成员必须遵守欧洲标准化委员会内部条例,条例规定了给予欧洲标准与国家标准同样的地位。类似国家标准涉及的最新列表和参考目录可以向管理中心或任何欧洲标准化委员会成员国申请获得。欧洲标准现有3个官方版本(英语,法语,德语)。欧洲标准化委员会成员有责任将其翻译成本国语言,并告知管理中心,其他语种的翻译版本与官方版本地位相同。欧洲标准化委员会成员是来自各个国家的国家标准团体,包括奥地利、比利时、捷克共和国、丹麦、芬兰、法国、德国、希腊、冰岛、爱尔兰、意大利、卢森堡、荷兰、挪威、波兰、葡萄牙、瑞典、瑞士和英国。前言ISO(国际标准化组织)是国家标准化组织(ISO成员组织)的世界联盟。国际标准的编制工作通常是由ISO技术委员会来完成。研究某一项课题的每一个成员组织都有权利作为该课题的技术委员会的代表。与ISO有密切联系的政府的和非政府的国际组织也参与了国际标准的编制工作。ISO与国际电工委员会密切合作来编制各种电工学标准。技术委员会编写的国际标准草案由各成员组织投票确认。得到75%以上的成员组织的投票确认后,国际标准才能出版。国际标准ISO11114-1,按照ISO和CEN两者间的技术合作协议(《维也纳协议》),由欧洲标准化委员会与技术委员会ISO/TC58(气瓶)合作共同编制。ISO11114包括以下各部分,总标题为移动气瓶—气瓶和瓶阀材料与盛装气体的相容性:——第一部分:金属材料——第二部分:非金属物质——第三部分:有氧环境内的自然测试附录A是ISO11114-1的主要部分。附录ZZ仅供参考;附录ZZ提供了文中相应的国际和欧洲标准列表(因为并未给出等价物);目录前言介绍1.范围2.参考标准3.定义4.材料5.兼容性标准6.材料兼容性附录A(标准性)气体/材料NQSAB兼容代码附录ZZ(推荐性)文中相应的国际和欧洲标准(因为并未给出等价物)前言本文件(ENISO11114-4:2005)由技术委员会ISO/TC58“气瓶”与技术委员会CEN/TC23“移动气瓶”(其秘书处由英国标准协会举办)合作准备。标准草案提交并进行正式投票,通过欧洲标准化委员会的批准,于1997年9月18日起名为ENISO11114-1。欧洲标准已被提交收入到RID的参考文献或ADR的技术附件中。因此,在本文中,只有当RID或ADR技术附件中提及了标准本身,那么在参考标准中所列的标准是标准化的,以及覆盖目前现存标准中没有提及的RID/ADR中基本要求的标准是标准化的。最迟至1998年4月,通过同文的出版或背书形式,欧洲标准应被给予与国家标准同样的地位,同时与其相矛盾的国家标准应最迟在1998年4月废除。根据欧洲标准化委员会内部条例,下列国家的国家标准组织应必须参与欧洲标准的实施,包括奥地利、比利时、捷克共和国、丹麦、芬兰、法国、德国、希腊、冰岛、爱尔兰、意大利、卢森堡、荷兰、挪威、波兰、葡萄牙、瑞典、瑞士和英国。介绍本标准是关于气体与材料以及混合气体和材料的兼容性的三部分标准中的一部分:——第一部分:金属材料——第二部分:非金属物质——第三部分:有氧环境内的自然测试工业用气、医用用气、特殊用气(如:高纯气体、校准气体)都能用气瓶储存并运输。用于制造气瓶和其瓶阀的材料的基本要求与气体相兼容。凭借多年的实际应用和经验,所含气体与气瓶材料的兼容性已建立。现存的国家和国际规格与标准没有完全地覆盖该方面。本标准是在当前的国际经验和常识的基础上编制的。1、范围本标准指导了金属气瓶、瓶阀材料和所含气体之间兼容性的选择和评估。所给的兼容性数据与单组分气体相关。含压缩、液化和溶解气体的无缝焊接气瓶应予以考虑。注:本标准中,术语“气瓶”代表的是可移动式压力容器,包括钢管和压力滚筒。其他方面,如已交付产品的质量,都不予考虑。2.参考标准本标准由标有日期的引用文件、未标日期的引用文件,以及其他出版物的条款合并而长。该些参考标准在文中合适的地方被引用,出版物在随后列表。若引用的标准文件标有日期,那么当合并的出版物发生修改时,应将出版物的修改也应用到本标准中;若引用的文件不标日期,则应采用该引用参考文件的最新版本。EN485-2锻铝和铝合金—板材,板条,板—第二部分:机械性能;EN586-2铝和铝合金锻件—第二部分:机械性能和其他性能;EN720-2:1996可运输气瓶—气体和气体混合物—第二部分:气体和气体混合物的易燃性和氧化能力的确定;EN849:1996可运输气瓶—气瓶阀—规范和型式试验;prEN1964-1:1995可运输气瓶—容积0.5L~150L可重复使用的可运输无缝钢制气瓶设计和制造的规范—第一部分:最大Rm值为1100N/mm2的无缝钢管;prEN1975:1996可运输气瓶—容积0.5L~150L可重复使用的可运输无缝铝合金气瓶设计和制造的规范;EN10088-1不锈钢—第一部分:不锈钢列表;prENISO11114-2:1997可运输气瓶—气瓶和瓶阀与所含气体的兼容性—第二部分:非金属材料;ENISO11114-3:1997可运输气瓶—气瓶和瓶阀与所含气体的兼容性—第三部分:有氧环境内的自然测试;ISO/DIS7866全球使用的可重复使用的可运输无缝铝合金气瓶—设计、制造和试验;ISO/DIS9809-1可运输无缝钢制气瓶—设计、制造和试验—第一部分:拉伸强度低于1100MPa的淬火和回火钢制气瓶;ISO9328-5压力钢板和钢带—交货技术条件—第五部分:奥氏体钢;ISO10156:1996气体和气体混合物—火灾隐患和氧化能力的决定来选择瓶阀出口;3.定义本标准中以下术语定义如下:3.1合格技术人员合格技术人员,应具有必需的技术知识,经验和权利以评估和批准与气体一起使用的材料,并判断决定必要使用时的特殊情况。该技术人员也应正式获得合适的技术学科的资格。3.2可接受的满足正常使用条件的材料/气体的结合物应予以考虑(主要的兼容特征见表1)。3.3不推荐材料/气体的结合可能是不安全的。倘若材料/气体的结合已获得规定使用条件的合格技术人员的评估和认可,那么该结合物可以使用。4.材料4.1气瓶材料制造气瓶最常用的金属材料在以下标准中规定:铝:钢:EN485-2ISO9328-5EN586-2prEN1964-1PrEN1975ISO/DIS9809-1ISO/DIS78664.2瓶阀材料气瓶瓶阀体最常用的制造材料是黄铜,其它铜基合金,碳钢,不锈钢和铝合金。在某些特殊的应用中,镍和镀镍合金也是可以使用的。用于制造瓶阀体的某些碳钢、不锈钢和铝合金的要求规定与用于制造气瓶的材料的规定在同一标准中(见4.1)。4.3特殊考虑4.3.1在某些特殊情况中,倘若被合适的镀层或保护,那么非兼容的材料也是可以使用的。而该种行为必须在合格技术人员经过各种兼容方面的考虑和证实的情况下才能进行。4.3.2非金属组件(如阀门密封,密封填料,O型圈等)应遵循prENISO11114-2。在阀杆处,使用的密封或润滑材料应与气体相兼容。氧化气体(见ISO10156或EN720-2)应采取特别预防措施(见ENISO11114-3)。4.3.3由于大气水汽会引起高风险污染情况,应充分考虑潮湿环境下瓶阀的兼容性。4.3.4本标准中引用不锈钢,使用的是美国钢铁协会(AISI)的识别号,如304。EN10088-1中相等等级的钢铁如下:3041.4301304L1.4306-1.43073161.4401316L1.44045.兼容性标准5.1总则气体和气瓶材料之间的兼容性受化学反应和物理效应的影响,划分为以下5大类:——腐蚀(可能预见的最频繁的反应类型);——氢脆;——化学反应引起的危险产物;——激烈反应(如:燃烧);——低温下的脆化反应;5.2腐蚀气体的存在会引起许多型式的腐蚀机理。5.2.1干腐蚀干气与气瓶材料发生化学反应,反应的结果是气瓶瓶壁的厚度减小。该种腐蚀形式并不常见,因为干腐蚀的比率在室温下非常低。5.2.2潮湿腐蚀由于自由水的存在,气瓶内会发生最常见的潮湿腐蚀。然而,即使水含量不饱和,某些吸湿气体(如:氯化氢,氯气)也会发生腐蚀。因此,一些气体/材料结合物是不推荐的,即使其在理论上的干燥环境内是惰性的。因此,阻止任何水分进入气瓶内部是非常重要的。进入气瓶内部的水分的只要来源:——来自于客户(逆扩散/逆填充,或者当气瓶空装时,由于瓶阀未装而导致空气的进入);——水压试验过程中;——充装气体过程中;在某些情况下,阻止任何水分进入气瓶是非常困难的——尤其当充装入气瓶内的气体是吸湿气体时(如:氯化氢,氯气)。倘若充装者不能保证气体和气瓶的干燥性,那么应使用能与湿性气体相兼容的气瓶材料,即使干性气体是不腐蚀的。合金的“潮湿腐蚀”有不同的型式:——普遍腐蚀:如,通过酸性气体(二氧化碳,二氧化硫),或氧化气体(氧气,氯气)。此外,某些气体即使是惰性气体,但当其发生水解时,也会导致腐蚀产物的产生(如:二氯氢硅);——局部腐蚀:如:铝合金中湿氯化氢会发生点状腐蚀,或高强度钢铁开裂,湿一氧化碳二氧化碳的混合物会发生应力腐蚀;5.2.3杂质腐蚀由于杂质的存在,惰性气体(非腐蚀性的)会发生腐蚀现象。在气瓶充装过程中,使用过程中,或者倘若初始产品是不完全净化的,那么会发生气体污染现象。最常见的污染物由以下几种:——大气,该种情况下,最危险的杂质是水分(见5.2.2)和氧气(如:液化氨);——含某些气体的激进产物,如天然气中含有硫化氢;——生产过程中气体遗留的腐蚀跟踪(酸,水银等);倘若这些腐蚀形式的影响是危险的,并且杂质的存在是不可阻止的,那么应使用能与杂质相兼容的气瓶材料。5.3氢脆在气瓶材料使用条件下,干性气体会在室温下发生脆化反应。最熟知的例子就是氢气引起的脆化反应。在某些情况下,应力开裂现象会导致气瓶(气瓶含有氢气,氢气混合物,氢轴承化合物,包括氢化物)的失败。倘若气体的部分压力和气瓶材料的应力水平足够高,那么会发生氢脆反应。注:对于34CrMo4Q,和丁字钢,高于5MPa(50bar)的等量氢分压,钢的最大极限拉伸强度应为950MPa。一些标准详述了为氢气瓶选择具有合适的最大拉伸强度的适合钢材的试验方法。当最大拉伸强度为950MPa时,硫化氢和甲硫醇的等量分压应被减小至0.25MPa(2.5bar)。5.4危险产物在某些情况下,气体与金属材料的反应会导致危险产物的产生。如:铜含量大于70%的铜合金与乙炔的反应,铝气瓶中氯甲烷的反应。5.5激烈反应(如:燃烧)原则山,气体/金属材料的反应子啊室温下是不常见的,因为此种反应的发生需要高激活能量。一些非金属材料能与一些气体发生此种反应(如:氧气,氯气)。5.6低温下的脆化反应在某些情况下,对于一些有毒气体,泵和压缩机是不推荐使用的,那么应使用低温物质(如:液氮)通过对气瓶的冷却对气瓶进行充装。在该种情况下,应使用低温条件下具有良好冲击性能的材料;不应使用碳或低合金钢。在一些另外的情况中,气瓶在低温下被进行规律地充装气体(如:二氧化碳)。气瓶使用最低温度下,使用的材料应具有适当的冲击性能。6.材料兼容性6.1兼容性表在选择气体/气瓶/瓶阀结合物之前,应对表1中所给的“主要的兼容性特征”进行详细调查。特别关注应用于可接受材料上的任何限制。注:气体通常以英语字母表顺序排列。6.2表1中使用的惯例和标志粗体铅字表明该材料是常用的;“A”表示该材料是可接受的(见3.2);“NR”表示该材料是不推荐的(见3.3);“Dry”表示使用环境下气瓶内无自由水(使用环境包括最高的预期操作压力,最低的预期操作温度);“Wet”表示不符合上述“dry”中的条件时的环境;6.3材料的缩写NS=正火钢和碳钢;QTS=淬火和回火钢;AA=铝合金;SS=不锈钢;B=黄铜和铜合金;CS=碳钢;表1:气体/材料兼容性气体编号名称化学式主要兼容性特征材料气瓶瓶阀ANRANR1.乙炔能与某一金属(包括纯铜)形成爆炸