中考复习一次函数应用专题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学习好资料欢迎下载O60204批发单价(元)5批发量(kg)①②第23题图(1)20XX年中考复习一次函数应用专题1.某县政府打算用25000元用于为某乡福利院购买每台价格为2000元的彩电和每台价格为1800元的冰箱,并计划恰好全部用完此款.(1)问原计划所购买的彩电和冰箱各多少台?(2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%的财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法.解:(1)设原计划购买彩电x台,冰箱y台,根据题意,得2000180025000xy,化简得:109125xy.由于xy、均为正整数,解得85xy,.(2)该批家电可获财政补贴为2500013%3250()元.由于多买的冰箱也可获得13%的财政补贴,实际负担为总价的87%.3250(113%)3735.621800≈≥,∴可多买两台冰箱.答:(1)原计划购买彩电8台和冰箱5台;(2)能多购买两台冰箱.我的想法:可以拿财政补贴款3250元,再借350元,先购买两台冰箱回来,再从总价3600元冰箱的财政补贴468元中拿出350元用于归还借款,这样不会增加实际负担.2.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.金额w(元)O批发量m(kg)300200100204060学习好资料欢迎下载【解】(1)解:图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;图②表示批发量高于60kg的该种水果,可按4元/kg批发.(2)解:由题意得:20606054mmwmm≤≤())>(,函数图象如图所示.由图可知资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x元,由图可得日最高销量32040wm当m>60时,x<6.5由题意,销售利润为2(4)(32040)40[(6)4]yxmx当x=6时,160y最大值,此时m=80即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.解法二:设日最高销售量为xkg(x>60)则由图②日零售价p满足:32040xp,于是32040xp销售利润23201(4)(80)1604040xyxx当x=80时,160y最大值,此时p=6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.3.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?【答案】(1)由图象知,400423320aa,所以40a;(2)设BC的解析式为ykxb,则把(40,320)和(104,0)代入,得403201040kbkb,学习好资料欢迎下载解得5520kb,因此5520yx,当60x时,220y,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放m个窗口,则由题知330400430m≥,解得529m≥,因为m为整数,所以6m,即至少需要同时开放6个售票窗口。4.(2010山东泰安)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式;(2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂的印制合算?【答案】解:(1)甲厂的收费y(元)与印制数量x(份)之间的函数关系式为y=x+1000乙厂的收费y(元)与印制数量x(份)之间的函数关系式为y=2x(2)根据题意:若找甲厂印制,可以印制的份数x满足3000=x+1000得x=2000若找乙厂印制,可以印制的份数x满足3000=2x得x=1500又20001500∴找甲厂印制的宣传材料多一些.(3)根据题意可得x+10002x解得x1000当印制数量大于1000份时,在甲厂印刷合算.5.(2010四川内江)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?【答案】解:⑴设应安排x天进行精加工,y天进行粗加工,根据题意得:x+y=12,5x+15y=140.解得x=4,y=8.答:应安排4天进行精加工,8天进行粗加工.⑵①精加工m吨,则粗加工(140-m)吨,根据题意得:W=2000m+1000(140-m)学习好资料欢迎下载=1000m+140000.②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m5+140-m15≤10解得m≤5.∴0<m≤5.又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,∴当m=5时,Wmax=1000×5+140000=145000.∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.6.(2010广东汕头)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【答案】解:(1)设甲车租x辆,则乙车租(10-x)辆,根据题意,得170)10(2016340)10(3040xxxx解之得5.74x∵x是整数∴x=4、5、6、7∴所有可行的租车方案共有四种:①甲车4辆、乙车6辆;②甲车5辆、乙车5辆;③甲车6辆、乙车4辆;④甲车7辆、乙车3辆.(2)设租车的总费用为y元,则y=2000x+1800(10-x),即y=200x+18000∵k=200>0,∴y随x的增大而增大∵x=4、5、6、7∴x=4时,y有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省.7.(2010云南玉溪)某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.⑴分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)之间的函数关系式;⑵李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最学习好资料欢迎下载合算?【答案】解:(1)y甲=477x.y乙=530×3+530(x-3)·80%=424x+318.(2)由y甲=y乙得477x=424x+318,∴x=6.由y甲﹥y乙得477x﹥424x+318,则x﹥6.由y甲﹤y乙得477x﹤424x+318,则x﹤6.所以当x=6时,到甲、乙两个商店购买费用相同.当4≤x﹤6时,到甲商店购买合算.当6﹤x≤10时,到乙商店购买合算.8.(2010湖北十堰)如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.【答案】解:(1)由题可得1270238yxyx,当y1=y2时,即-x+70=2x-38∴3x=108,∴x=36当x=36时,y1=y2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件.(2)令y1=0,得x=70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量.(3)设政府对该药品每件价格补贴a元,则有346703462()38xxa,解得309xa所以政府部门对该药品每件应补贴9元.9.(2010广西玉林、防城港)玉柴一分厂计划一个月(按30天计)内生产柴油机500台。(1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务。问原先每天生产多少台?(2)若生产甲、乙两种型号柴油机,并且根据市场供求情况确定;乙型号产量不超过甲型号产量的3倍。已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产值w最大是多学习好资料欢迎下载少万元。【答案】(1)解:设原先每于生产x台,故有3050030(1)500xx解得475033x因x是正整数,所以x=16答:略(2)设甲型号机为m台,则乙型号机为500-m,且有500-m3mm≥125而w=2m+3(500-m)=-m+1500因为一次函数的一次项系数为负,故w随m的增大而减少,故当m=125时,w的值最大,最大值是-125+1500=1250万元答:略10.(2010广西南宁)20XX年1月1日,全球第三大自贸区——中国—东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,先用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.【答案】解:(1)解法一:设大车用x辆,小车用y辆.依据题意,得240101520yxyx解得128yx∴大车用8辆,小车用12辆.解法二:设大车用x辆,小车用)20(x辆.依据题意,得240)20(1015xx解得8x∴1282020x∴大车用8辆,小车用

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功