平面图形的认识-三角形提优题目

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35∘,∠ACB=85∘,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明。已知如图,射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF。(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。如图,AD⊥BD,AE平分∠BAC,∠B=30°,∠ACE=110°.求∠AED的度数.现有两块大小相同的直角三角板△ABC、△DEF,∠ACB=∠DFE=90°,∠A=∠D=30°.(1)将这两块三角板摆成如图①的形式,使B、F、E、A在同一条直线上,点C在边DF上,DE与AC相交于点G,试求∠AGD的度数;(2)将图①中的△ABC固定,把△DEF绕着点F逆时针旋转成如图②的形式,当旋转的角度等于多少度时,DF∥AC?并说明理由.如图,△ABC中,∠ABC=50°,∠ACB=70°,D为边BC上一点(D与B、C不重合),连接AD,∠ADB的平分线所在直线分别交直线AB、AC于点E、F.(1)求证:2∠AED-∠CAD=170°;(2)若∠ABC=∠ACB=n°,且D为射线CB上一点,(1)中其他条件不变,请直接写出∠AED与∠CAD的数量关系.(用含n的代数式表示)如图,O是△ABC的3条角平分线的交点,0G⊥BC,垂足为G.(1)猜想:∠BOC与∠BAC之间的数量关系,并说明理由;(2)∠DOB与∠GOC相等吗?为什么?如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C直角顶点X在△ABC内部,若∠A=30︒,则ABC+∠ACB=︒,∠XBC+∠XCB=︒;(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边Xy、XZ仍然分别经过点B、C,直角顶点X还在△ABC内部,那么∠ABX+∠ACX的人小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.如图,在每个小正方形边长为1的方格纸中,ABCV的顶点都在方格纸格点上.将ABCV向左平移2格,再向上平移4格.(1)请在图中画出平移后的'''ABCV;(2)再在图中画出ABCV的高CD;(3)在图中能使PBCABCSSVV的格点P的个数有个(点P异于A).(1)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG//AC(___________________________________)∴∠2=_______(___________________________________)∵∠1=∠2(______________)∴∠1=∠DCA(等量代换)∴EF//CD(___________________________________)∴∠AEF=∠ADC(___________________________________)∵EF⊥AB(已知)∴∠AEF=90°(___________________________________)∴∠ADC=90°∴CD⊥AB(___________________________________)AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).如图,在△ABC中,∠B=31°,∠C=55°,AD⊥BC于D,AE平分∠BAC交BC于E,DF⊥AE于F,求∠ADF的度数.图1DACEBDACEB备用图DADARtΔABC中,∠C=90°,点D、E分别是ΔABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠.(1)若点P在线段AB上,如图(1)所示,且∠=50°,则∠1+∠2=___________°;(2)若点P在边AB上运动,如图(2)所示,则∠、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠、∠1、∠2之间有何关系?猜想并说明理由。若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.如图,在△ABC中,∠BAC=68°,点I是两角∠B、∠C平分线的交点.问题(1):填空:∠BIC=°.问题(2):若点D是两条外角平分线的交点;填空:∠BDC=°.问题(3):若点E是内角∠ABC、外角∠ACG的平分线的交点,试探索:∠BEC与∠BAC的数量关系,并说明理由.问题(4):在问题(3)的条件下,当∠ACB等于多少度时,CE∥AB.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?IABCDEG已知ABCV中,BADEBC,AD交BE于F.(1)试证明:ABCBFD;(2)若35ABC,//EGAD,EHBE,求HEG的度数.小明在学习三角形知识时,发现如下三个有趣的结论:在RtABCV,90A,BD平分ABC,M为直线AC上一点,MEBC,垂足为E,AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD,MF的位置关系是;如图②,M为边AC反向延长线上一点,则BD,MF的位置关系是;如图③,M为边AC延长线上一点,则BD,MF的位置关系是;(2)请就图①、图②、或图③中的一种情况,给出证明.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠.(1)若点P在线段AB上,如图(1)所示,且∠=50°,则∠1+∠2=°;(2分)(2)若点P在边AB上运动,如图(2)所示,则∠、∠1、∠2之间的关系为:;(2分)(3)若点P运动到边AB的延长线上,如图(3)所示,则∠、∠1、∠2之间有何关系?猜想并说明理由.(4分)(4)若点P运动到△ABC形外,如图(4)所示,则∠、∠1、∠2之间的关系为:.(2分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:.(3)△ABC的面积是平方单位。已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°则∠OGA=(2)若∠GOA=31∠BOA,∠GAD=31∠BAD,∠OBA=30°,则∠OGA=(3)将(2)中“∠OBA=30°”改为“∠OBA=α”,其余条件不变,则∠OGA=(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分...,AF平分∠BAD,∠ABO=α(30°α90°)求∠OGA的度数(用含α的代数式表示)在四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的平分线交于点E,试求出∠BEC的度数.用硬纸片做了两个直角三角形,见图(1)、图(2).在图(1)中,∠B=90°,∠A=30°;图(2)中,∠D=90°,∠F=45°.图(3)是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上,移动开始时,点D与点A重合.(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐;连接FC,∠FCE的度数逐渐(填“不变”“变大”或“变小”);(2)△DEF在移动过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?若能,求出∠CFE的度数;若不能,请说明理由.如图(1),一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使点A落在CE上,则∠BDA’与∠A的数量关系是.研究(2):如桌折成图(2)的形状,猜想∠BDA’、∠CEA’和∠A的数量关系,并说明理由.研究(3):如果折成图(3)的形状,猜想∠BDA’、∠CEA’和∠A的数量关系是(不需要证明).图(1)图(2)图(3)图(4)问题2研究(4):将问题1推广,如图(4),将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是,请说明理由.

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功