中考数学总复习_全部导学案(教师版) (1)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中考数学总复习导学案【教师版】全套-1-—1—第6课时一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件.3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【例题精讲】例1.(1)解方程.xx21152156(2)解二元一次方程组27271523yxyx解:例2.已知x2是关于x的方程()xmxm284的解,求m的值.方法1方法2例3.下列方程组中,是二元一次方程组的是()A.B.C.D.例4.在中,用x的代数式表示y,则y=______________.例5.已知a、b、c满足02052cbacba,则a:b:c=.例6.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月这户只需交10元用电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度0.5元交费.①该厂某户居民2月份用电90度,超过了规定的A度,则超过部分应该交电费多少元(用A表示)?.②右表是这户居民3月、4月的用电情况和交费情况:根据右表数据,求电厂规定A度为.月份用电量交电费总数3月80度25元4月45度10元65115yxyx2102yxyx158xyyx31yxx032yx思考与收获中考数学总复习导学案【教师版】全套-2-—2—【当堂检测】1.方程x52的解是______.2.一种书包经两次降价10%,现在售价a元,则原售价为_______元.3.若关于x的方程xk153的解是x3,则k_________.4.若11yx,22yx,cyx3都是方程ax+by+2=0的解,则c=____.5.解下列方程(组):(1)()xx3252;(2)....xx0713715023;(3)832152yxyx;(4)xx2114135;6.当x2时,代数式xbx22的值是12,求当x2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5(2)mxnymxny由于甲看错了方程①中的m,得到的解是42xy,乙看错了方程中②的n,得到的解是25xy,试求正确,mn的值.思考与收获中考数学总复习导学案【教师版】全套-3-—3—第7课时一元二次方程【知识梳理】1.一元二次方程的概念及一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b2-4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的两根为4.根的判别式:当b2-4ac>0时,方程有实数根.当b2-4ac=0时,方程有实数根.当b2-4ac<0时,方程实数根.【思想方法】1.常用解题方法——换元法2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想【例题精讲】例1.选用合适的方法解下列方程:(1)(x-15)2-225=0;(2)3x2-4x-1=0(用公式法);(3)4x2-8x+1=0(用配方法);(4)x2+22x=0例2.已知一元二次方程0437122mmmxxm)(有一个根为零,求m的值.例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.aacbbx242思考与收获中考数学总复习导学案【教师版】全套-4-—4—【当堂检测】一、填空1.下列是关于x的一元二次方程的有_______①02x3x12②01x2③)3x4)(1x()1x2(2④06x5xk22⑤021xx2432⑥0x22x322.一元二次方程3x2=2x的解是.3.一元二次方程(m-2)x2+3x+m2-4=0有一解为0,则m的值是.4.已知m是方程x2-x-2=0的一个根,那么代数式m2-m=.5.一元二次方程ax2+bx+c=0有一根-2,则bca4的值为.6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.二、选择题:8.对于任意的实数x,代数式x2-5x+10的值是一个()A.非负数B.正数C.整数D.不能确定的数9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是()A.3B.3或-2C.2或-3D.210.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x2+4=0(B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=011.下面是李刚同学在测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.方程x2+2x+2=0实数根为0个D.方程x2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是()A.16B.18C.16或18D.21三、解下方程:(1)(x+5)(x-5)=7(2)x(x-1)=3-3x(3)x2-4x-4=0(4)x2+x-1=0(6)(2y-1)2-2(2y-1)-3=0思考与收获中考数学总复习导学案【教师版】全套-5-—5—第8课时方程的应用(一)【知识梳理】1.方程(组)的应用;2.列方程(组)解应用题的一般步骤;3.实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了()A.4场B.5场C.6场D.13场例2.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.x–y=49y=2(x+1)B.x+y=49y=2(x+1)C.x–y=49y=2(x–1)D.x+y=49y=2(x–1)例3.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意得到的方程是()1515115151..12121515115151..1212ABxxxxCDxxxx例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x张,信封个数分别为y个,则可列方程组.例5.团体购买公园门票票价如下:购票人数1~5051~100100人以上每人门票(元)13元11元9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?思考与收获中考数学总复习导学案【教师版】全套-6-—6—【当堂检测】1.某市处理污水,需要铺设一条长为1000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm,则可得方程.2.“鸡兔同笼”是我国民间流传的诗歌形式的数学题,“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x只,兔为y只,所列方程组正确的是()100236.yxyxA3636..2410022100xyxyBCxyxy1002436..yxyxD3.为满足用水量不断增长的需求,某市最近新建甲、乙、丙三个水厂,这三个水厂的日供水量共计11.8万m3,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A型,B型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4.2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5.某体育彩票经售商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩费,进价分别是A种彩票每张1.5元,B种彩票每张2元,C种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.思考与收获中考数学总复习导学案【教师版】全套-7-—7—第9课时方程的应用(二)【知识梳理】1.一元二次方程的应用;2.列方程解应用题的一般步骤;3.问题中方程的解要符合实际情况.【例题精讲】例1.一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.16B.25C.34D.61例2.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米例3.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.225003600xB.22500(1)3600xC.22500(1%)3600xD.22500(1)2500(1)3600xx例4.某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,设此人从甲地到乙地经过的路程为x千米,那么x的最大值是()A.11B.8C.7D.5例5.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6.某商场将进货

1 / 75
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功